|
|
|
|
@ -30,6 +30,7 @@
|
|
|
|
|
|
|
|
|
|
#define ENERGY_NONE 0
|
|
|
|
|
#define ENERGY_WATCHDOG 4 // Allow up to 4 seconds before deciding no valid data present
|
|
|
|
|
#define ENERGY_MAX_PHASES 3
|
|
|
|
|
|
|
|
|
|
#include <Ticker.h>
|
|
|
|
|
|
|
|
|
|
@ -73,58 +74,57 @@ void (* const EnergyCommand[])(void) PROGMEM = {
|
|
|
|
|
const char kEnergyPhases[] PROGMEM = "|%s / %s|%s / %s / %s||[%s,%s]|[%s,%s,%s]";
|
|
|
|
|
|
|
|
|
|
struct ENERGY {
|
|
|
|
|
float voltage[3] = { 0, 0, 0 }; // 123.1 V
|
|
|
|
|
float current[3] = { 0, 0, 0 }; // 123.123 A
|
|
|
|
|
float active_power[3] = { 0, 0, 0 }; // 123.1 W
|
|
|
|
|
float apparent_power[3] = { NAN, NAN, NAN }; // 123.1 VA
|
|
|
|
|
float reactive_power[3] = { NAN, NAN, NAN }; // 123.1 VAr
|
|
|
|
|
float power_factor[3] = { NAN, NAN, NAN }; // 0.12
|
|
|
|
|
float frequency[3] = { NAN, NAN, NAN }; // 123.1 Hz
|
|
|
|
|
|
|
|
|
|
float voltage[ENERGY_MAX_PHASES]; // 123.1 V
|
|
|
|
|
float current[ENERGY_MAX_PHASES]; // 123.123 A
|
|
|
|
|
float active_power[ENERGY_MAX_PHASES]; // 123.1 W
|
|
|
|
|
float apparent_power[ENERGY_MAX_PHASES]; // 123.1 VA
|
|
|
|
|
float reactive_power[ENERGY_MAX_PHASES]; // 123.1 VAr
|
|
|
|
|
float power_factor[ENERGY_MAX_PHASES]; // 0.12
|
|
|
|
|
float frequency[ENERGY_MAX_PHASES]; // 123.1 Hz
|
|
|
|
|
#if defined(SDM630_IMPORT) || defined(SDM72_IMPEXP)
|
|
|
|
|
float import_active[3] = { NAN, NAN, NAN }; // 123.123 kWh
|
|
|
|
|
float import_active[ENERGY_MAX_PHASES]; // 123.123 kWh
|
|
|
|
|
#endif // SDM630_IMPORT || SDM72_IMPEXP
|
|
|
|
|
float export_active[3] = { NAN, NAN, NAN }; // 123.123 kWh
|
|
|
|
|
float export_active[ENERGY_MAX_PHASES]; // 123.123 kWh
|
|
|
|
|
|
|
|
|
|
float start_energy = 0; // 12345.12345 kWh total previous
|
|
|
|
|
float daily = 0; // 123.123 kWh
|
|
|
|
|
float total = 0; // 12345.12345 kWh total energy
|
|
|
|
|
float start_energy; // 12345.12345 kWh total previous
|
|
|
|
|
float daily; // 123.123 kWh
|
|
|
|
|
float total; // 12345.12345 kWh total energy
|
|
|
|
|
|
|
|
|
|
unsigned long kWhtoday_delta = 0; // 1212312345 Wh 10^-5 (deca micro Watt hours) - Overflows to Energy.kWhtoday (HLW and CSE only)
|
|
|
|
|
unsigned long kWhtoday_offset = 0; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
|
|
|
|
|
unsigned long kWhtoday_delta; // 1212312345 Wh 10^-5 (deca micro Watt hours) - Overflows to Energy.kWhtoday (HLW and CSE only)
|
|
|
|
|
unsigned long kWhtoday_offset; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
|
|
|
|
|
unsigned long kWhtoday; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
|
|
|
|
|
unsigned long period = 0; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
|
|
|
|
|
unsigned long period; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
|
|
|
|
|
|
|
|
|
|
uint8_t fifth_second = 0;
|
|
|
|
|
uint8_t command_code = 0;
|
|
|
|
|
uint8_t data_valid[3] = { 0, 0, 0 };
|
|
|
|
|
uint8_t fifth_second;
|
|
|
|
|
uint8_t command_code;
|
|
|
|
|
uint8_t data_valid[ENERGY_MAX_PHASES];
|
|
|
|
|
|
|
|
|
|
uint8_t phase_count = 1; // Number of phases active
|
|
|
|
|
bool voltage_common = false; // Use single voltage
|
|
|
|
|
bool frequency_common = false; // Use single frequency
|
|
|
|
|
bool kWhtoday_offset_init = false;
|
|
|
|
|
uint8_t phase_count; // Number of phases active
|
|
|
|
|
bool voltage_common; // Use single voltage
|
|
|
|
|
bool frequency_common; // Use single frequency
|
|
|
|
|
bool kWhtoday_offset_init;
|
|
|
|
|
|
|
|
|
|
bool voltage_available = true; // Enable if voltage is measured
|
|
|
|
|
bool current_available = true; // Enable if current is measured
|
|
|
|
|
bool voltage_available; // Enable if voltage is measured
|
|
|
|
|
bool current_available; // Enable if current is measured
|
|
|
|
|
|
|
|
|
|
bool type_dc = false;
|
|
|
|
|
bool power_on = true;
|
|
|
|
|
bool type_dc;
|
|
|
|
|
bool power_on;
|
|
|
|
|
|
|
|
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
|
|
|
uint16_t power_history[3][3] = {{ 0 }, { 0 }, { 0 }};
|
|
|
|
|
uint8_t power_steady_counter = 8; // Allow for power on stabilization
|
|
|
|
|
bool min_power_flag = false;
|
|
|
|
|
bool max_power_flag = false;
|
|
|
|
|
bool min_voltage_flag = false;
|
|
|
|
|
bool max_voltage_flag = false;
|
|
|
|
|
bool min_current_flag = false;
|
|
|
|
|
bool max_current_flag = false;
|
|
|
|
|
uint16_t power_history[ENERGY_MAX_PHASES][3];
|
|
|
|
|
uint8_t power_steady_counter; // Allow for power on stabilization
|
|
|
|
|
bool min_power_flag;
|
|
|
|
|
bool max_power_flag;
|
|
|
|
|
bool min_voltage_flag;
|
|
|
|
|
bool max_voltage_flag;
|
|
|
|
|
bool min_current_flag;
|
|
|
|
|
bool max_current_flag;
|
|
|
|
|
|
|
|
|
|
#ifdef USE_ENERGY_POWER_LIMIT
|
|
|
|
|
uint16_t mplh_counter = 0;
|
|
|
|
|
uint16_t mplw_counter = 0;
|
|
|
|
|
uint8_t mplr_counter = 0;
|
|
|
|
|
uint8_t max_energy_state = 0;
|
|
|
|
|
uint16_t mplh_counter;
|
|
|
|
|
uint16_t mplw_counter;
|
|
|
|
|
uint8_t mplr_counter;
|
|
|
|
|
uint8_t max_energy_state;
|
|
|
|
|
#endif // USE_ENERGY_POWER_LIMIT
|
|
|
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
|
|
|
} Energy;
|
|
|
|
|
@ -136,16 +136,16 @@ Ticker ticker_energy;
|
|
|
|
|
char* EnergyFormatIndex(char* result, char* input, bool json, uint32_t index, bool single = false)
|
|
|
|
|
{
|
|
|
|
|
char layout[16];
|
|
|
|
|
GetTextIndexed(layout, sizeof(layout), (index -1) + (3 * json), kEnergyPhases);
|
|
|
|
|
GetTextIndexed(layout, sizeof(layout), (index -1) + (ENERGY_MAX_PHASES * json), kEnergyPhases);
|
|
|
|
|
switch (index) {
|
|
|
|
|
case 2:
|
|
|
|
|
snprintf_P(result, FLOATSZ *3, layout, input, input + FLOATSZ); // Dirty
|
|
|
|
|
snprintf_P(result, FLOATSZ * ENERGY_MAX_PHASES, layout, input, input + FLOATSZ); // Dirty
|
|
|
|
|
break;
|
|
|
|
|
case 3:
|
|
|
|
|
snprintf_P(result, FLOATSZ *3, layout, input, input + FLOATSZ, input + FLOATSZ + FLOATSZ); // Even dirtier
|
|
|
|
|
snprintf_P(result, FLOATSZ * ENERGY_MAX_PHASES, layout, input, input + FLOATSZ, input + FLOATSZ + FLOATSZ); // Even dirtier
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
snprintf_P(result, FLOATSZ *3, input);
|
|
|
|
|
snprintf_P(result, FLOATSZ * ENERGY_MAX_PHASES, input);
|
|
|
|
|
}
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
@ -333,7 +333,7 @@ void EnergyMarginCheck(void)
|
|
|
|
|
bool jsonflg = false;
|
|
|
|
|
Response_P(PSTR("{\"" D_RSLT_MARGINS "\":{"));
|
|
|
|
|
|
|
|
|
|
int16_t power_diff[3] = { 0 };
|
|
|
|
|
int16_t power_diff[ENERGY_MAX_PHASES] = { 0 };
|
|
|
|
|
for (uint32_t phase = 0; phase < Energy.phase_count; phase++) {
|
|
|
|
|
uint16_t active_power = (uint16_t)(Energy.active_power[phase]);
|
|
|
|
|
|
|
|
|
|
@ -374,7 +374,7 @@ void EnergyMarginCheck(void)
|
|
|
|
|
for (uint32_t phase = 0; phase < Energy.phase_count; phase++) {
|
|
|
|
|
dtostrfd(power_diff[phase], 0, power_diff_chr[phase]);
|
|
|
|
|
}
|
|
|
|
|
char value_chr[FLOATSZ *3];
|
|
|
|
|
char value_chr[FLOATSZ * ENERGY_MAX_PHASES];
|
|
|
|
|
ResponseAppend_P(PSTR("\"" D_CMND_POWERDELTA "\":%s"), EnergyFormat(value_chr, power_diff_chr[0], 1));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
@ -763,7 +763,7 @@ void CmndModuleAddress(void) {
|
|
|
|
|
|
|
|
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
|
|
|
void CmndPowerDelta(void) {
|
|
|
|
|
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 3)) {
|
|
|
|
|
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= ENERGY_MAX_PHASES)) {
|
|
|
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32000)) {
|
|
|
|
|
Settings.energy_power_delta[XdrvMailbox.index -1] = XdrvMailbox.payload;
|
|
|
|
|
}
|
|
|
|
|
@ -873,19 +873,43 @@ void CmndMaxEnergyStart(void) {
|
|
|
|
|
#endif // USE_ENERGY_POWER_LIMIT
|
|
|
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
|
|
|
|
|
|
|
|
void EnergyDrvInit(void) {
|
|
|
|
|
memset(&Energy, 0, sizeof(Energy)); // Reset all to 0 and false;
|
|
|
|
|
for (uint32_t phase = 0; phase < ENERGY_MAX_PHASES; phase++) {
|
|
|
|
|
Energy.apparent_power[phase] = NAN;
|
|
|
|
|
Energy.reactive_power[phase] = NAN;
|
|
|
|
|
Energy.power_factor[phase] = NAN;
|
|
|
|
|
Energy.frequency[phase] = NAN;
|
|
|
|
|
#if defined(SDM630_IMPORT) || defined(SDM72_IMPEXP)
|
|
|
|
|
Energy.import_active[phase] = NAN;
|
|
|
|
|
#endif // SDM630_IMPORT || SDM72_IMPEXP
|
|
|
|
|
Energy.export_active[phase] = NAN;
|
|
|
|
|
}
|
|
|
|
|
Energy.phase_count = 1; // Number of phases active
|
|
|
|
|
Energy.voltage_available = true; // Enable if voltage is measured
|
|
|
|
|
Energy.current_available = true; // Enable if current is measured
|
|
|
|
|
Energy.power_on = true;
|
|
|
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
|
|
|
Energy.power_steady_counter = 8; // Allow for power on stabilization
|
|
|
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
|
|
|
|
|
|
|
|
TasmotaGlobal.energy_driver = ENERGY_NONE;
|
|
|
|
|
XnrgCall(FUNC_PRE_INIT); // Find first energy driver
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void EnergySnsInit(void)
|
|
|
|
|
{
|
|
|
|
|
XnrgCall(FUNC_INIT);
|
|
|
|
|
|
|
|
|
|
if (TasmotaGlobal.energy_driver) {
|
|
|
|
|
Energy.kWhtoday_offset = 0;
|
|
|
|
|
// Energy.kWhtoday_offset = 0;
|
|
|
|
|
// Do not use at Power On as Rtc was invalid (but has been restored from Settings already)
|
|
|
|
|
if ((ResetReason() != REASON_DEFAULT_RST) && RtcSettingsValid()) {
|
|
|
|
|
Energy.kWhtoday_offset = RtcSettings.energy_kWhtoday;
|
|
|
|
|
Energy.kWhtoday_offset_init = true;
|
|
|
|
|
}
|
|
|
|
|
Energy.kWhtoday = 0;
|
|
|
|
|
Energy.kWhtoday_delta = 0;
|
|
|
|
|
// Energy.kWhtoday = 0;
|
|
|
|
|
// Energy.kWhtoday_delta = 0;
|
|
|
|
|
Energy.period = Energy.kWhtoday_offset;
|
|
|
|
|
EnergyUpdateToday();
|
|
|
|
|
ticker_energy.attach_ms(200, Energy200ms);
|
|
|
|
|
@ -1007,9 +1031,9 @@ void EnergyShow(bool json)
|
|
|
|
|
energy_tariff = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
char value_chr[FLOATSZ *3]; // Used by EnergyFormatIndex
|
|
|
|
|
char value2_chr[FLOATSZ *3];
|
|
|
|
|
char value3_chr[FLOATSZ *3];
|
|
|
|
|
char value_chr[FLOATSZ * ENERGY_MAX_PHASES]; // Used by EnergyFormatIndex
|
|
|
|
|
char value2_chr[FLOATSZ * ENERGY_MAX_PHASES];
|
|
|
|
|
char value3_chr[FLOATSZ * ENERGY_MAX_PHASES];
|
|
|
|
|
|
|
|
|
|
if (json) {
|
|
|
|
|
bool show_energy_period = (0 == TasmotaGlobal.tele_period);
|
|
|
|
|
@ -1159,8 +1183,7 @@ bool Xdrv03(uint8_t function)
|
|
|
|
|
bool result = false;
|
|
|
|
|
|
|
|
|
|
if (FUNC_PRE_INIT == function) {
|
|
|
|
|
TasmotaGlobal.energy_driver = ENERGY_NONE;
|
|
|
|
|
XnrgCall(FUNC_PRE_INIT); // Find first energy driver
|
|
|
|
|
EnergyDrvInit();
|
|
|
|
|
}
|
|
|
|
|
else if (TasmotaGlobal.energy_driver) {
|
|
|
|
|
switch (function) {
|
|
|
|
|
|