/* xdrv_52_3_berry_native.ino - Berry scripting language, native fucnctions Copyright (C) 2021 Stephan Hadinger, Berry language by Guan Wenliang https://github.com/Skiars/berry This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_BERRY #include #include "esp8266toEsp32.h" /*********************************************************************************************\ * Native functions mapped to Berry functions * * import gpio * * \*********************************************************************************************/ extern "C" { #include "berry/include/be_gpio_defines.h" #ifdef SOC_DAC_SUPPORTED #include "soc/dac_channel.h" #include #endif // SOC_DAC_SUPPORTED // virtual member int gp_member(bvm *vm); int gp_member(bvm *vm) { be_const_module_member_raise(vm, lv_gpio_constants, lv_gpio_constants_size); be_return(vm); } int gp_pin_mode(bvm *vm); int gp_pin_mode(bvm *vm) { int32_t argc = be_top(vm); // Get the number of arguments if (argc == 2 && be_isint(vm, 1) && be_isint(vm, 2)) { int32_t pin = be_toint(vm, 1); int32_t mode = be_toint(vm, 2); if (pin >= 0) { if (mode > 0) { // standard ESP mode pinMode(pin, mode); } else { // synthetic mode if (-1 == mode) { // DAC #ifdef SOC_DAC_SUPPORTED if (pin != DAC_CHAN0_GPIO_NUM && pin != DAC_CHAN1_GPIO_NUM) { be_raisef(vm, "value_error", "DAC only supported on GPIO%i-%i", DAC_CHAN0_GPIO_NUM, DAC_CHAN1_GPIO_NUM); } // DEPRECATED - this is not needed anymore, the GPIO is configured when first write occurs #else be_raise(vm, "value_error", "DAC unsupported in this chip"); #endif } } } be_return_nil(vm); } be_raise(vm, kTypeError, nullptr); } int gp_digital_write(bvm *vm); int gp_digital_write(bvm *vm) { int32_t argc = be_top(vm); // Get the number of arguments if (argc == 2 && be_isint(vm, 1) && be_isint(vm, 2)) { int32_t pin = be_toint(vm, 1); int32_t val = be_toint(vm, 2); if (pin >= 0) { digitalWrite(pin, val); } be_return_nil(vm); } be_raise(vm, kTypeError, nullptr); } int gp_digital_read(bvm *vm); int gp_digital_read(bvm *vm) { int32_t argc = be_top(vm); // Get the number of arguments if (argc == 1 && be_isint(vm, 1)) { int32_t pin = be_toint(vm, 1); if (pin >= 0) { int32_t ret = digitalRead(pin); be_pushint(vm, ret); } else { be_pushnil(vm); } be_return(vm); } be_raise(vm, kTypeError, nullptr); } int gp_dac_voltage(bvm *vm); int gp_dac_voltage(bvm *vm) { #ifdef SOC_DAC_SUPPORTED int32_t argc = be_top(vm); // Get the number of arguments if (argc == 2 && be_isint(vm, 1) && be_isnumber(vm, 2)) { int32_t pin = be_toint(vm, 1); int32_t mV = be_toint(vm, 2); if (pin != DAC_CHAN0_GPIO_NUM && pin != DAC_CHAN1_GPIO_NUM) { be_raisef(vm, "value_error", "DAC only supported on GPIO%i-%i", DAC_CHAN0_GPIO_NUM, DAC_CHAN1_GPIO_NUM); } if (mV < 0) { mV = 0; } uint32_t dac_value = changeUIntScale(mV, 0, 3300, 0, 255); // convert from 0..3300 ms to 0..255 if (!dacWrite(pin, dac_value)) { be_raise(vm, "value_error", "Error: dacWrite failed"); } be_pushint(vm, changeUIntScale(dac_value, 0, 255, 0, 3300)); // convert back to mV to indicate the actual value be_return(vm); } be_raise(vm, kTypeError, nullptr); #else // defined(CONFIG_IDF_TARGET_ESP32) || defined(CONFIG_IDF_TARGET_ESP32S2) be_raise(vm, "value_error", "DAC unsupported in this chip"); #endif // defined(CONFIG_IDF_TARGET_ESP32) || defined(CONFIG_IDF_TARGET_ESP32S2) } // Tasmota specific int gp_pin_used(bvm *vm); int gp_pin_used(bvm *vm) { int32_t argc = be_top(vm); // Get the number of arguments if (argc >= 1 && argc <= 2 && be_isint(vm, 1)) { int32_t pin = be_toint(vm, 1); int32_t index = 0; if (argc == 2 && be_isint(vm, 2)) { index = be_toint(vm, 2); } bool ret; if (pin == GPIO_OPTION_A) { ret = bitRead(TasmotaGlobal.gpio_optiona.data, index); } else { ret = PinUsed(pin, index); } be_pushbool(vm, ret); be_return(vm); } be_raise(vm, kTypeError, nullptr); } int gp_pin(bvm *vm); int gp_pin(bvm *vm) { int32_t argc = be_top(vm); // Get the number of arguments if (argc >= 1 && argc <= 2 && be_isint(vm, 1)) { int32_t pin = be_toint(vm, 1); int32_t index = 0; if (argc == 2 && be_isint(vm, 2)) { index = be_toint(vm, 2); } int32_t ret = Pin(pin, index); be_pushint(vm, ret); be_return(vm); } be_raise(vm, kTypeError, nullptr); } void gp_set_duty(int32_t pin, int32_t duty, int32_t hpoint) { analogWritePhase(pin, duty, hpoint); } void gp_set_frequency(int32_t pin, int32_t frequency) { analogWriteFreq(frequency, pin); } // gpio.counter_read(counter:int) -> int or nil // // Read counter value, or return nil if counter is not used int gp_counter_read(bvm *vm); int gp_counter_read(bvm *vm) { #ifdef USE_COUNTER int32_t argc = be_top(vm); // Get the number of arguments if (argc >= 1 && be_isint(vm, 1)) { int32_t counter = be_toint(vm, 1) + 1; // counter are 0 based in Berry, 1 based in Tasmota // is `index` refering to a counter? if (CounterPinConfigured(counter)) { be_pushint(vm, CounterPinRead(counter)); be_return(vm); } else { be_return_nil(vm); } } be_raise(vm, kTypeError, nullptr); #else be_return_nil(vm); #endif } int gp_counter_set_add(bvm *vm, bool add) { #ifdef USE_COUNTER int32_t argc = be_top(vm); // Get the number of arguments if (argc >= 2 && be_isint(vm, 1) && be_isint(vm, 2)) { int32_t counter = be_toint(vm, 1) + 1; // counter are 0 based in Berry, 1 based in Tasmota int32_t value = be_toint(vm, 2); // is `index` refering to a counter? if (CounterPinConfigured(counter)) { be_pushint(vm, CounterPinSet(counter, value, add)); be_return(vm); } else { be_return_nil(vm); } } be_raise(vm, kTypeError, nullptr); #else be_return_nil(vm); #endif } // gpio.counter_set(counter:int, value:int) -> int or nil // // Set the counter value, return the actual value, or return nil if counter is not used int gp_counter_set(bvm *vm); int gp_counter_set(bvm *vm) { return gp_counter_set_add(vm, false); } // gpio.counter_add(counter:int, value:int) -> int or nil // // Add to the counter value, return the actual value, or return nil if counter is not used int gp_counter_add(bvm *vm); int gp_counter_add(bvm *vm) { return gp_counter_set_add(vm, true); } // gpio.get_duty(pin:int) -> int // // Read the value of a PWM within resolution // Returns -1 if pin is not a PWM pin int gp_get_duty(int32_t pin); int gp_get_duty(int32_t pin) { return ledcRead2(pin); } // gpio.get_duty_resolution(pin:int) -> int // // Read the resolution of a PWM // Returns -1 if pin is not a PWM pin int gp_get_duty_resolution(int32_t pin); int gp_get_duty_resolution(int32_t pin) { int32_t channel = analogGetChannel2(pin); if (channel >= 0) { return (1 << ledcReadResolution(channel)); } return -1; } // gpio.get_pin_type(phy_gpio:int) -> int // // Get the type configured for physical GPIO // Return 0 if GPIO is not configured extern int gp_get_pin(int32_t pin); extern int gp_get_pin(int32_t pin) { return GetPin(pin) / 32; } // gpio.get_pin_type_index(phy_gpio:int) -> int // // Get the sub-index for the type configured for physical GPIO // Return 0 if GPIO is not configured extern int gp_get_pin_index(int32_t pin); extern int gp_get_pin_index(int32_t pin) { return GetPin(pin) % 32; } } #endif // USE_BERRY