/* xsns_05_esp32_ds18x20.ino - DS18x20 temperature sensor support for ESP32 Tasmota Copyright (C) 2021 Heiko Krupp, Theo Arends and md5sum-as (https://github.com/md5sum-as) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef ESP32 #ifdef USE_DS18x20 /*********************************************************************************************\ * DS18B20 - Temperature - Multiple sensors \*********************************************************************************************/ #define XSNS_05 5 //#define DS18x20_USE_ID_AS_NAME // Use last 3 bytes for naming of sensors /* #define DS18x20_USE_ID_ALIAS in my_user_config.h or user_config_override.h * Use alias for fixed sensor name in scripts by autoexec. Command: DS18Alias XXXXXXXXXXXXXXXX,N where XXXXXXXXXXXXXXXX full serial and N number 1-255 * Result in JSON: "DS18Sens_2":{"Id":"000003287CD8","Temperature":26.3} (example with N=2) * Setting N to an alphanumeric value, the complete name is replaced with it * Result in JSON: "Outside1":{"Id":"000003287CD8","Temperature":26.3} (example with N=Outside1) */ #define DS18S20_CHIPID 0x10 // +/-0.5C 9-bit #define DS1822_CHIPID 0x22 // +/-2C 12-bit #define DS18B20_CHIPID 0x28 // +/-0.5C 12-bit #define MAX31850_CHIPID 0x3B // +/-0.25C 14-bit #define W1_SKIP_ROM 0xCC #define W1_CONVERT_TEMP 0x44 #define W1_READ_SCRATCHPAD 0xBE #ifndef DS18X20_MAX_SENSORS // DS18X20_MAX_SENSORS fallback to 8 if not defined in user_config_override.h #define DS18X20_MAX_SENSORS 8 #endif #define DS18X20_ALIAS_LEN 17 const char kDs18x20Types[] PROGMEM = "DS18x20|DS18S20|DS1822|DS18B20|MAX31850"; uint8_t ds18x20_chipids[] = { 0, DS18S20_CHIPID, DS1822_CHIPID, DS18B20_CHIPID, MAX31850_CHIPID }; struct { #ifdef W1_PARASITE_POWER float temperature; #endif float temp_sum; uint16_t numread; uint8_t address[8]; uint8_t index; uint8_t valid; int8_t pins_id; #ifdef DS18x20_USE_ID_ALIAS char *alias = (char*)calloc(DS18X20_ALIAS_LEN, 1); #endif //DS18x20_USE_ID_ALIAS } ds18x20_sensor[DS18X20_MAX_SENSORS]; #include OneWire *ds = nullptr; OneWire *ds18x20_gpios[MAX_DSB]; struct { char name[17]; uint8_t sensors; uint8_t gpios; // Count of GPIO found uint8_t retryRead; } DS18X20Data; /********************************************************************************************/ void Ds18x20Init(void) { DS18X20Data.retryRead = 0; DS18X20Data.gpios = 0; for (uint32_t pins = 0; pins < MAX_DSB; pins++) { if (PinUsed(GPIO_DSB, pins)) { int8_t pin_out = -1; if (PinUsed(GPIO_DSB_OUT, pins)) { pin_out = Pin(GPIO_DSB_OUT, pins); } ds18x20_gpios[pins] = new OneWire(Pin(GPIO_DSB, pins), pin_out); DS18X20Data.gpios++; } } Ds18x20Search(); AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSORS_FOUND " %d"), DS18X20Data.sensors); } void Ds18x20Search(void) { uint8_t num_sensors = 0; uint8_t sensor = 0; for (uint8_t pins = 0; pins < DS18X20Data.gpios; pins++) { ds = ds18x20_gpios[pins]; ds->reset_search(); for (num_sensors; num_sensors < DS18X20_MAX_SENSORS; num_sensors) { if (!ds->search(ds18x20_sensor[num_sensors].address)) { ds->reset_search(); break; } // If CRC Ok and Type DS18S20, DS1822, DS18B20 or MAX31850 if ((OneWire::crc8(ds18x20_sensor[num_sensors].address, 7) == ds18x20_sensor[num_sensors].address[7]) && ((ds18x20_sensor[num_sensors].address[0] == DS18S20_CHIPID) || (ds18x20_sensor[num_sensors].address[0] == DS1822_CHIPID) || (ds18x20_sensor[num_sensors].address[0] == DS18B20_CHIPID) || (ds18x20_sensor[num_sensors].address[0] == MAX31850_CHIPID))) { #ifdef DS18x20_USE_ID_ALIAS ds18x20_sensor[DS18X20Data.sensors].alias[0] = '0'; #endif ds18x20_sensor[num_sensors].pins_id = pins; num_sensors++; } } } for (uint32_t i = 0; i < num_sensors; i++) { ds18x20_sensor[i].index = i; } for (uint32_t i = 0; i < num_sensors; i++) { for (uint32_t j = i + 1; j < num_sensors; j++) { if (uint32_t(ds18x20_sensor[ds18x20_sensor[i].index].address) > uint32_t(ds18x20_sensor[ds18x20_sensor[j].index].address)) { std::swap(ds18x20_sensor[i].index, ds18x20_sensor[j].index); } } } DS18X20Data.sensors = num_sensors; } void Ds18x20Convert(void) { for (uint32_t i = 0; i < DS18X20Data.gpios; i++) { ds = ds18x20_gpios[i]; ds->reset(); #ifdef W1_PARASITE_POWER // With parasite power held wire high at the end for parasitically powered devices ds->write(W1_SKIP_ROM, 1); // Address all Sensors on Bus ds->write(W1_CONVERT_TEMP, 1); // start conversion, no parasite power on at the end #else ds->write(W1_SKIP_ROM); // Address all Sensors on Bus ds->write(W1_CONVERT_TEMP); // start conversion, no parasite power on at the end #endif // delay(750); // 750ms should be enough for 12bit conv } } bool Ds18x20Read(uint8_t sensor, float &t) { uint8_t data[12]; int8_t sign = 1; t = NAN; uint8_t index = ds18x20_sensor[sensor].index; if (ds18x20_sensor[index].valid) { ds18x20_sensor[index].valid--; } ds = ds18x20_gpios[ds18x20_sensor[index].pins_id]; ds->reset(); ds->select(ds18x20_sensor[index].address); #ifdef W1_PARASITE_POWER // With parasite power held wire high at the end for parasitically powered devices ds->write(W1_READ_SCRATCHPAD, 1); // Read Scratchpad #else ds->write(W1_READ_SCRATCHPAD); // Read Scratchpad #endif for (uint32_t i = 0; i < 9; i++) { data[i] = ds->read(); } if (OneWire::crc8(data, 8) == data[8]) { switch(ds18x20_sensor[index].address[0]) { case DS18S20_CHIPID: { int16_t tempS = (((data[1] << 8) | (data[0] & 0xFE)) << 3) | ((0x10 - data[6]) & 0x0F); t = ConvertTemp(tempS * 0.0625f - 0.250f); #ifdef W1_PARASITE_POWER ds18x20_sensor[index].temperature = t; #endif ds18x20_sensor[index].valid = SENSOR_MAX_MISS; return true; } case DS1822_CHIPID: case DS18B20_CHIPID: { uint16_t temp12 = (data[1] << 8) + data[0]; if (temp12 > 2047) { temp12 = (~temp12) +1; sign = -1; } t = ConvertTemp(sign * temp12 * 0.0625f); // Divide by 16 #ifdef W1_PARASITE_POWER ds18x20_sensor[index].temperature = t; #endif ds18x20_sensor[index].valid = SENSOR_MAX_MISS; return true; } case MAX31850_CHIPID: { int16_t temp14 = (data[1] << 8) + (data[0] & 0xFC); t = ConvertTemp(temp14 * 0.0625f); // Divide by 16 #ifdef W1_PARASITE_POWER ds18x20_sensor[index].temperature = t; #endif ds18x20_sensor[index].valid = SENSOR_MAX_MISS; return true; } } } AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSOR_CRC_ERROR)); return false; } void Ds18x20Name(uint8_t sensor) { uint32_t sensor_index = ds18x20_sensor[sensor].index; uint32_t index = sizeof(ds18x20_chipids); while (--index) { if (ds18x20_sensor[sensor_index].address[0] == ds18x20_chipids[index]) { break; } } // DS18B20 GetTextIndexed(DS18X20Data.name, sizeof(DS18X20Data.name), index, kDs18x20Types); #ifdef DS18x20_USE_ID_AS_NAME char address[17]; for (uint32_t j = 0; j < 3; j++) { sprintf(address+2*j, "%02X", ds18x20_sensor[sensor_index].address[3-j]); // Only last 3 bytes } // DS18B20-8EC44C snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("%s%c%s"), DS18X20Data.name, IndexSeparator(), address); return; #elif defined(DS18x20_USE_ID_ALIAS) if (ds18x20_sensor[sensor_index].alias[0] && (ds18x20_sensor[sensor_index].alias[0] != '0')) { if (isdigit(ds18x20_sensor[sensor_index].alias[0])) { // DS18Sens-1 snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("DS18Sens%c%d"), IndexSeparator(), atoi(ds18x20_sensor[sensor_index].alias)); } else { // UserText snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("%s"), ds18x20_sensor[sensor_index].alias); } return; } #endif // DS18x20_USE_ID_AS_NAME or DS18x20_USE_ID_ALIAS if (DS18X20Data.sensors > 1) { // DS18B20-1 snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("%s%c%d"), DS18X20Data.name, IndexSeparator(), sensor + 1); } } /********************************************************************************************/ void Ds18x20EverySecond(void) { if (!DS18X20Data.sensors) { return; } if (TasmotaGlobal.uptime & 1) { // 2mS // Ds18x20Search(); // Check for changes in sensors number Ds18x20Convert(); // Start Conversion, takes up to one second } else { float t; for (uint32_t i = 0; i < DS18X20Data.sensors; i++) { // 12mS per device bool result = false; uint8_t counter = 0; while (counter++ < DS18X20Data.retryRead+1) { if(Ds18x20Read(i, t)) { result = true; break; } } if (!result) AddLog(LOG_LEVEL_ERROR, PSTR("Read sensor %u failed in Ds18x20EverySecond."), i); if (result) { // Read temperature if (Settings->flag5.ds18x20_mean) { if (ds18x20_sensor[i].numread++ == 0) { ds18x20_sensor[i].temp_sum = 0; } ds18x20_sensor[i].temp_sum += t; } } else { Ds18x20Name(i); AddLogMissed(DS18X20Data.name, ds18x20_sensor[ds18x20_sensor[i].index].valid); } } } } void Ds18x20Show(bool json) { float t; uint8_t dsxflg = 0; for (uint32_t i = 0; i < DS18X20Data.sensors; i++) { #ifdef W1_PARASITE_POWER // With parasite power read one sensor at a time if (ds18x20_sensor[i].valid) { t = ds18x20_sensor[i].temperature; #else bool result = false; uint8_t counter = 0; while (counter++ < DS18X20Data.retryRead+1) { if(Ds18x20Read(i, t)) { result = true; break; } } if (!result) AddLog(LOG_LEVEL_ERROR, PSTR("Read sensor %u failed in Ds18x20Show."), i); if (result) { // Check if read failed #endif Ds18x20Name(i); if (json) { if (Settings->flag5.ds18x20_mean) { if ((0 == TasmotaGlobal.tele_period) && ds18x20_sensor[i].numread) { t = ds18x20_sensor[i].temp_sum / ds18x20_sensor[i].numread; ds18x20_sensor[i].numread = 0; } } char address[17]; for (uint32_t j = 0; j < 6; j++) { sprintf(address+2*j, "%02X", ds18x20_sensor[ds18x20_sensor[i].index].address[6-j]); // Skip sensor type and crc } ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_ID "\":\"%s\",\"" D_JSON_TEMPERATURE "\":%*_f}"), DS18X20Data.name, address, Settings->flag2.temperature_resolution, &t); dsxflg++; #ifdef USE_DOMOTICZ if ((0 == TasmotaGlobal.tele_period) && (1 == dsxflg)) { DomoticzFloatSensor(DZ_TEMP, t); } #endif // USE_DOMOTICZ #ifdef USE_KNX if ((0 == TasmotaGlobal.tele_period) && (1 == dsxflg)) { KnxSensor(KNX_TEMPERATURE, t); } #endif // USE_KNX #ifdef USE_WEBSERVER } else { WSContentSend_Temp(DS18X20Data.name, t); #endif // USE_WEBSERVER } } } } #ifdef DS18x20_USE_ID_ALIAS const char kds18Commands[] PROGMEM = "DS18|" // prefix D_CMND_DS_ALIAS "|" D_CMND_DS_RESCAN "|" D_CMND_DS_RETRYREAD; void (* const DSCommand[])(void) PROGMEM = { &CmndDSAlias, &CmndDSRescan ,&CmndDSRetryRead }; void CmndDSRetryRead(void) { char argument[XdrvMailbox.data_len]; if (ArgC() == 1) { DS18X20Data.retryRead = atoi(ArgV(argument, 1)); } Response_P(PSTR("{\"DS18" D_CMND_DS_RETRYREAD "\": %d}"), DS18X20Data.retryRead); } void CmndDSRescan(void) { char argument[XdrvMailbox.data_len]; uint8_t retries = 1; uint8_t sensorsToFind = 1; if ((ArgC() > 0) && (ArgC() < 3)) { sensorsToFind = atoi(ArgV(argument, 1)); } if (ArgC() == 2) { retries = atoi(ArgV(argument, 2)); } DS18X20Data.sensors = 0; memset(&ds18x20_sensor, 0, sizeof(ds18x20_sensor)); while ((DS18X20Data.sensors < sensorsToFind) && (retries-- > 0)) { Ds18x20Search(); AddLog(LOG_LEVEL_ERROR, PSTR(D_LOG_DSB D_SENSORS_FOUND " %d"), DS18X20Data.sensors); } Response_P(PSTR("{")); for (uint32_t i = 0; i < DS18X20Data.sensors; i++) { Ds18x20Name(i); char address[17]; for (uint32_t j = 0; j < 8; j++) { sprintf(address+2*j, "%02X", ds18x20_sensor[ds18x20_sensor[i].index].address[7-j]); // Skip sensor type and crc } ResponseAppend_P(PSTR("\"%s\":{\"" D_JSON_ID "\":\"%s\"}"), DS18X20Data.name, address); if (i < DS18X20Data.sensors-1) { ResponseAppend_P(PSTR(",")); } } ResponseAppend_P(PSTR("}")); } void CmndDSAlias(void) { // Ds18Alias 430516707FA6FF28,SensorName - Use SensorName instead of DS18B20 // Ds18Alias 430516707FA6FF28,0 - Disable alias (default) char Argument1[XdrvMailbox.data_len]; char Argument2[XdrvMailbox.data_len]; char address[17]; if (ArgC() == 2) { ArgV(Argument1, 1); ArgV(Argument2, 2); TrimSpace(Argument2); for (uint32_t i = 0; i < DS18X20Data.sensors; i++) { for (uint32_t j = 0; j < 8; j++) { sprintf(address+2*j, "%02X", ds18x20_sensor[i].address[7-j]); } if (!strncmp(Argument1, address, 12) && Argument2[0]) { snprintf_P(ds18x20_sensor[i].alias, DS18X20_ALIAS_LEN, PSTR("%s"), Argument2); break; } } } Response_P(PSTR("{")); for (uint32_t i = 0; i < DS18X20Data.sensors; i++) { Ds18x20Name(i); char address[17]; for (uint32_t j = 0; j < 8; j++) { sprintf(address+2*j, "%02X", ds18x20_sensor[ds18x20_sensor[i].index].address[7-j]); // Skip sensor type and crc } ResponseAppend_P(PSTR("\"%s\":{\"" D_JSON_ID "\":\"%s\"}"), DS18X20Data.name, address); if (i < DS18X20Data.sensors-1) { ResponseAppend_P(PSTR(",")); } } ResponseAppend_P(PSTR("}")); } #endif // DS18x20_USE_ID_ALIAS /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns05(uint32_t function) { bool result = false; if (PinUsed(GPIO_DSB, GPIO_ANY)) { switch (function) { case FUNC_INIT: Ds18x20Init(); break; case FUNC_EVERY_SECOND: Ds18x20EverySecond(); break; case FUNC_JSON_APPEND: Ds18x20Show(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: Ds18x20Show(0); break; #endif // USE_WEBSERVER #ifdef DS18x20_USE_ID_ALIAS case FUNC_COMMAND: result = DecodeCommand(kds18Commands, DSCommand); break; #endif // DS18x20_USE_ID_ALIAS } } return result; } #endif // USE_DS18x20 #endif // ESP32