// Copyright 2018 Erdem U. Altinyurt // Copyright 2019 David Conran /// @file /// @brief Support for Vestel protocols. /// Vestel added by Erdem U. Altinyurt #include "ir_Vestel.h" #include #ifndef UNIT_TEST #include #endif #include "IRrecv.h" #include "IRremoteESP8266.h" #include "IRsend.h" #include "IRtext.h" #include "IRutils.h" #include "ir_Haier.h" // Ref: // None. Totally reverse engineered. using irutils::addBoolToString; using irutils::addIntToString; using irutils::addLabeledString; using irutils::addModeToString; using irutils::addTempToString; using irutils::minsToString; using irutils::setBit; using irutils::setBits; #if SEND_VESTEL_AC /// Send a Vestel message /// Status: STABLE / Working. /// @param[in] data The message to be sent. /// @param[in] nbits The number of bits of message to be sent. /// @param[in] repeat The number of times the command is to be repeated. void IRsend::sendVestelAc(const uint64_t data, const uint16_t nbits, const uint16_t repeat) { if (nbits % 8 != 0) return; // nbits is required to be a multiple of 8. sendGeneric(kVestelAcHdrMark, kVestelAcHdrSpace, // Header kVestelAcBitMark, kVestelAcOneSpace, // Data kVestelAcBitMark, kVestelAcZeroSpace, // Data kVestelAcBitMark, 100000, // Footer + repeat gap data, nbits, 38, false, repeat, 50); } #endif // SEND_VESTEL_AC /// Class constructor /// @param[in] pin GPIO to be used when sending. /// @param[in] inverted Is the output signal to be inverted? /// @param[in] use_modulation Is frequency modulation to be used? IRVestelAc::IRVestelAc(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { this->stateReset(); } /// Reset the state of the remote to a known good state/sequence. /// @note Power On, Mode Auto, Fan Auto, Temp = 25C/77F void IRVestelAc::stateReset(void) { remote_state = kVestelAcStateDefault; remote_time_state = kVestelAcTimeStateDefault; use_time_state = false; } /// Set up hardware to be able to send a message. void IRVestelAc::begin(void) { _irsend.begin(); } #if SEND_VESTEL_AC /// Send the current internal state as an IR message. /// @param[in] repeat Nr. of times the message will be repeated. void IRVestelAc::send(const uint16_t repeat) { _irsend.sendVestelAc(getRaw(), kVestelAcBits, repeat); } #endif // SEND_VESTEL_AC /// Get a copy of the internal state/code for this protocol. /// @return A code for this protocol based on the current internal state. uint64_t IRVestelAc::getRaw(void) { this->checksum(); if (use_time_state) return remote_time_state; return remote_state; } /// Set the internal state from a valid code for this protocol. /// @param[in] newState A valid code for this protocol. void IRVestelAc::setRaw(const uint8_t* newState) { uint64_t upState = 0; for (int i = 0; i < 7; i++) upState |= static_cast(newState[i]) << (i * 8); this->setRaw(upState); } /// Set the internal state from a valid code for this protocol. /// @param[in] newState A valid code for this protocol. void IRVestelAc::setRaw(const uint64_t newState) { use_time_state = false; remote_state = newState; remote_time_state = newState; if (this->isTimeCommand()) { use_time_state = true; remote_state = kVestelAcStateDefault; } else { remote_time_state = kVestelAcTimeStateDefault; } } /// Set the requested power state of the A/C to on. void IRVestelAc::on(void) { setPower(true); } /// Set the requested power state of the A/C to off. void IRVestelAc::off(void) { setPower(false); } /// Change the power setting. /// @param[in] on true, the setting is on. false, the setting is off. void IRVestelAc::setPower(const bool on) { setBits(&remote_state, kVestelAcPowerOffset, kVestelAcPowerSize, on ? 0b11 : 0b00); use_time_state = false; } /// Get the value of the current power setting. /// @return true, the setting is on. false, the setting is off. bool IRVestelAc::getPower(void) { return GETBITS64(remote_state, kVestelAcPowerOffset, kVestelAcPowerSize); } /// Set the temperature. /// @param[in] temp The temperature in degrees celsius. void IRVestelAc::setTemp(const uint8_t temp) { uint8_t new_temp = std::max(kVestelAcMinTempC, temp); new_temp = std::min(kVestelAcMaxTemp, new_temp); setBits(&remote_state, kVestelAcTempOffset, kNibbleSize, new_temp - kVestelAcMinTempH); use_time_state = false; } /// Get the current temperature setting. /// @return The current setting for temp. in degrees celsius. uint8_t IRVestelAc::getTemp(void) { return GETBITS64(remote_state, kVestelAcTempOffset, kNibbleSize) + kVestelAcMinTempH; } /// Set the speed of the fan. /// @param[in] fan The desired setting. void IRVestelAc::setFan(const uint8_t fan) { switch (fan) { case kVestelAcFanLow: case kVestelAcFanMed: case kVestelAcFanHigh: case kVestelAcFanAutoCool: case kVestelAcFanAutoHot: case kVestelAcFanAuto: setBits(&remote_state, kVestelAcFanOffset, kVestelAcFanSize, fan); break; default: setFan(kVestelAcFanAuto); } use_time_state = false; } /// Get the current fan speed setting. /// @return The current fan speed/mode. uint8_t IRVestelAc::getFan(void) { return GETBITS64(remote_state, kVestelAcFanOffset, kVestelAcFanSize); } /// Get the operating mode setting of the A/C. /// @return The current operating mode setting. uint8_t IRVestelAc::getMode(void) { return GETBITS64(remote_state, kVestelAcModeOffset, kModeBitsSize); } /// Set the operating mode of the A/C. /// @param[in] mode The desired operating mode. /// @note If we get an unexpected mode, default to AUTO. void IRVestelAc::setMode(const uint8_t mode) { switch (mode) { case kVestelAcAuto: case kVestelAcCool: case kVestelAcHeat: case kVestelAcDry: case kVestelAcFan: setBits(&remote_state, kVestelAcModeOffset, kModeBitsSize, mode); break; default: setMode(kVestelAcAuto); } use_time_state = false; } /// Set Auto mode/level of the A/C. /// @param[in] autoLevel The auto mode/level setting. void IRVestelAc::setAuto(const int8_t autoLevel) { if (autoLevel < -2 || autoLevel > 2) return; setMode(kVestelAcAuto); setFan((autoLevel < 0 ? kVestelAcFanAutoCool : kVestelAcFanAutoHot)); if (autoLevel == 2) setTemp(30); else if (autoLevel == 1) setTemp(31); else if (autoLevel == 0) setTemp(25); else if (autoLevel == -1) setTemp(16); else if (autoLevel == -2) setTemp(17); } /// Set the timer to be active on the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRVestelAc::setTimerActive(const bool on) { setBit(&remote_time_state, kVestelAcTimerFlagOffset, on); use_time_state = true; } /// Get if the Timer is active on the A/C. /// @return true, the setting is on. false, the setting is off. bool IRVestelAc::isTimerActive(void) { return GETBIT64(remote_time_state, kVestelAcTimerFlagOffset); } /// Set Timer option of A/C. /// @param[in] minutes Nr of minutes the timer is to be set for. /// @note Valid arguments are 0, 0.5, 1, 2, 3 and 5 hours (in minutes). /// 0 disables the timer. void IRVestelAc::setTimer(const uint16_t minutes) { // Clear both On & Off timers. remote_time_state &= ~((uint64_t)0xFFFF << kVestelAcOffTimeOffset); // Set the "Off" time with the nr of minutes before we turn off. remote_time_state |= (uint64_t)(((minutes / 60) << 3) + (minutes % 60) / 10) << kVestelAcOffTimeOffset; setOffTimerActive(false); // Yes. On Timer instead of Off timer active. setOnTimerActive(minutes != 0); setTimerActive(minutes != 0); use_time_state = true; } /// Get the Timer time of A/C. /// @return The number of minutes of time on the timer. uint16_t IRVestelAc::getTimer(void) { return getOffTimer(); } /// Set the A/C's internal clock. /// @param[in] minutes The time expressed in nr. of minutes past midnight. void IRVestelAc::setTime(const uint16_t minutes) { setBits(&remote_time_state, kVestelAcHourOffset, kVestelAcHourSize, minutes / 60); setBits(&remote_time_state, kVestelAcMinuteOffset, kVestelAcMinuteSize, minutes % 60); use_time_state = true; } /// Get the A/C's internal clock's time. /// @return The time expressed in nr. of minutes past midnight. uint16_t IRVestelAc::getTime(void) { return GETBITS64(remote_time_state, kVestelAcHourOffset, kVestelAcHourSize) * 60 + GETBITS64(remote_time_state, kVestelAcMinuteOffset, kVestelAcMinuteSize); } /// Set the On timer to be active on the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRVestelAc::setOnTimerActive(const bool on) { setBit(&remote_time_state, kVestelAcOnTimerFlagOffset, on); use_time_state = true; } /// Get if the On Timer is active on the A/C. /// @return true, the setting is on. false, the setting is off. bool IRVestelAc::isOnTimerActive(void) { return GETBIT64(remote_time_state, kVestelAcOnTimerFlagOffset); } /// Set a given timer time at a given bit offset. /// @param[in] minutes Time in nr. of minutes. /// @param[in] offset Nr. of bits offset from the start of the state. void IRVestelAc::_setTimer(const uint16_t minutes, const uint8_t offset) { setBits(&remote_time_state, offset, kVestelAcTimerSize, ((minutes / 60) << 3) + (minutes % 60) / 10); setTimerActive(false); use_time_state = true; } /// Get the number of minutes a timer is set for. /// @param[in] offset Nr. of bits offset from the start of the state. /// @return The time expressed in nr. of minutes. uint16_t IRVestelAc::_getTimer(const uint8_t offset) { return GETBITS64(remote_time_state, offset + kVestelAcTimerMinsSize, kVestelAcTimerHourSize) * 60 + // Hrs GETBITS64(remote_time_state, offset, kVestelAcTimerMinsSize) * 10; // Min } /// Set the On timer time on the A/C. /// @param[in] minutes Time in nr. of minutes. void IRVestelAc::setOnTimer(const uint16_t minutes) { setOnTimerActive(minutes); _setTimer(minutes, kVestelAcOnTimeOffset); } /// Get the A/C's On Timer time. /// @return The time expressed in nr. of minutes. uint16_t IRVestelAc::getOnTimer(void) { return _getTimer(kVestelAcOnTimeOffset); } /// Set the Off timer to be active on the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRVestelAc::setOffTimerActive(const bool on) { setBit(&remote_time_state, kVestelAcOffTimerFlagOffset, on); use_time_state = true; } /// Get if the Off Timer is active on the A/C. /// @return true, the setting is on. false, the setting is off. bool IRVestelAc::isOffTimerActive(void) { return GETBIT64(remote_time_state, kVestelAcOffTimerFlagOffset); } /// Set the Off timer time on the A/C. /// @param[in] minutes Time in nr. of minutes. void IRVestelAc::setOffTimer(const uint16_t minutes) { setOffTimerActive(minutes); _setTimer(minutes, kVestelAcOffTimeOffset); } /// Get the A/C's Off Timer time. /// @return The time expressed in nr. of minutes. uint16_t IRVestelAc::getOffTimer(void) { return _getTimer(kVestelAcOffTimeOffset); } /// Set the Sleep setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRVestelAc::setSleep(const bool on) { setBits(&remote_state, kVestelAcTurboSleepOffset, kNibbleSize, on ? kVestelAcSleep : kVestelAcNormal); use_time_state = false; } /// Get the Sleep setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRVestelAc::getSleep(void) { return GETBITS64(remote_state, kVestelAcTurboSleepOffset, kNibbleSize) == kVestelAcSleep; } /// Set the Turbo setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRVestelAc::setTurbo(const bool on) { setBits(&remote_state, kVestelAcTurboSleepOffset, kNibbleSize, on ? kVestelAcTurbo : kVestelAcNormal); use_time_state = false; } /// Get the Turbo setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRVestelAc::getTurbo(void) { return GETBITS64(remote_state, kVestelAcTurboSleepOffset, kNibbleSize) == kVestelAcTurbo; } /// Set the Ion (Filter) setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRVestelAc::setIon(const bool on) { setBit(&remote_state, kVestelAcIonOffset, on); use_time_state = false; } /// Get the Ion (Filter) setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRVestelAc::getIon(void) { return GETBIT64(remote_state, kVestelAcIonOffset); } /// Set the Swing Roaming setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRVestelAc::setSwing(const bool on) { setBits(&remote_state, kVestelAcSwingOffset, kNibbleSize, on ? kVestelAcSwing : 0xF); use_time_state = false; } /// Get the Swing Roaming setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRVestelAc::getSwing(void) { return GETBITS64(remote_state, kVestelAcSwingOffset, kNibbleSize) == kVestelAcSwing; } /// Calculate the checksum for a given state. /// @param[in] state The state to calc the checksum of. /// @return The calculated checksum value. uint8_t IRVestelAc::calcChecksum(const uint64_t state) { // Just counts the set bits +1 on stream and take inverse after mask return 0xFF - countBits(GETBITS64(state, 20, 44), 44, true, 2); } /// Verify the checksum is valid for a given state. /// @param[in] state The state to verify the checksum of. /// @return true, if the state has a valid checksum. Otherwise, false. bool IRVestelAc::validChecksum(const uint64_t state) { return GETBITS64(state, kVestelAcChecksumOffset, kVestelAcChecksumSize) == IRVestelAc::calcChecksum(state); } /// Calculate & set the checksum for the current internal state of the remote. void IRVestelAc::checksum(void) { // Stored the checksum value in the last byte. setBits(&remote_state, kVestelAcChecksumOffset, kVestelAcChecksumSize, this->calcChecksum(remote_state)); setBits(&remote_time_state, kVestelAcChecksumOffset, kVestelAcChecksumSize, this->calcChecksum(remote_time_state)); } /// Is the current state a time command? /// @return true, if the state is a time message. Otherwise, false. bool IRVestelAc::isTimeCommand(void) { return !GETBITS64(remote_state, kVestelAcPowerOffset, kNibbleSize) || use_time_state; } /// Convert a stdAc::opmode_t enum into its native mode. /// @param[in] mode The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRVestelAc::convertMode(const stdAc::opmode_t mode) { switch (mode) { case stdAc::opmode_t::kCool: return kVestelAcCool; case stdAc::opmode_t::kHeat: return kVestelAcHeat; case stdAc::opmode_t::kDry: return kVestelAcDry; case stdAc::opmode_t::kFan: return kVestelAcFan; default: return kVestelAcAuto; } } /// Convert a stdAc::fanspeed_t enum into it's native speed. /// @param[in] speed The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRVestelAc::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: case stdAc::fanspeed_t::kLow: return kVestelAcFanLow; case stdAc::fanspeed_t::kMedium: return kVestelAcFanMed; case stdAc::fanspeed_t::kHigh: case stdAc::fanspeed_t::kMax: return kVestelAcFanHigh; default: return kVestelAcFanAuto; } } /// Convert a native mode into its stdAc equivalent. /// @param[in] mode The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::opmode_t IRVestelAc::toCommonMode(const uint8_t mode) { switch (mode) { case kVestelAcCool: return stdAc::opmode_t::kCool; case kVestelAcHeat: return stdAc::opmode_t::kHeat; case kVestelAcDry: return stdAc::opmode_t::kDry; case kVestelAcFan: return stdAc::opmode_t::kFan; default: return stdAc::opmode_t::kAuto; } } /// Convert a native fan speed into its stdAc equivalent. /// @param[in] spd The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::fanspeed_t IRVestelAc::toCommonFanSpeed(const uint8_t spd) { switch (spd) { case kVestelAcFanHigh: return stdAc::fanspeed_t::kMax; case kVestelAcFanMed: return stdAc::fanspeed_t::kMedium; case kVestelAcFanLow: return stdAc::fanspeed_t::kMin; default: return stdAc::fanspeed_t::kAuto; } } /// Convert the current internal state into its stdAc::state_t equivalent. /// @return The stdAc equivalent of the native settings. stdAc::state_t IRVestelAc::toCommon(void) { stdAc::state_t result; result.protocol = decode_type_t::VESTEL_AC; result.model = -1; // Not supported. result.power = this->getPower(); result.mode = this->toCommonMode(this->getMode()); result.celsius = true; result.degrees = this->getTemp(); result.fanspeed = this->toCommonFanSpeed(this->getFan()); result.swingv = this->getSwing() ? stdAc::swingv_t::kAuto : stdAc::swingv_t::kOff; result.turbo = this->getTurbo(); result.filter = this->getIon(); result.sleep = this->getSleep() ? 0 : -1; // Not supported. result.swingh = stdAc::swingh_t::kOff; result.light = false; result.econo = false; result.quiet = false; result.clean = false; result.beep = false; result.clock = -1; return result; } /// Convert the current internal state into a human readable string. /// @return A human readable string. String IRVestelAc::toString(void) { String result = ""; result.reserve(100); // Reserve some heap for the string to reduce fragging. if (this->isTimeCommand()) { result += addLabeledString(minsToString(getTime()), kClockStr, false); result += addLabeledString( isTimerActive() ? minsToString(getTimer()) : kOffStr, kTimerStr); result += addLabeledString( (isOnTimerActive() && !isTimerActive()) ? minsToString(this->getOnTimer()) : kOffStr, kOnTimerStr); result += addLabeledString( isOffTimerActive() ? minsToString(getOffTimer()) : kOffStr, kOffTimerStr); return result; } // Not a time command, it's a normal command. result += addBoolToString(getPower(), kPowerStr, false); result += addModeToString(getMode(), kVestelAcAuto, kVestelAcCool, kVestelAcHeat, kVestelAcDry, kVestelAcFan); result += addTempToString(getTemp()); result += addIntToString(getFan(), kFanStr); result += kSpaceLBraceStr; switch (this->getFan()) { case kVestelAcFanAuto: result += kAutoStr; break; case kVestelAcFanLow: result += kLowStr; break; case kVestelAcFanMed: result += kMedStr; break; case kVestelAcFanHigh: result += kHighStr; break; case kVestelAcFanAutoCool: result += kAutoStr; result += ' '; result += kCoolStr; break; case kVestelAcFanAutoHot: result += kAutoStr; result += ' '; result += kHeatStr; break; default: result += kUnknownStr; } result += ')'; result += addBoolToString(getSleep(), kSleepStr); result += addBoolToString(getTurbo(), kTurboStr); result += addBoolToString(getIon(), kIonStr); result += addBoolToString(getSwing(), kSwingStr); return result; } #if DECODE_VESTEL_AC /// Decode the supplied Vestel message. /// Status: Alpha / Needs testing against a real device. /// @param[in,out] results Ptr to the data to decode & where to store the result /// @param[in] offset The starting index to use when attempting to decode the /// raw data. Typically/Defaults to kStartOffset. /// @param[in] nbits The number of data bits to expect. /// @param[in] strict Flag indicating if we should perform strict matching. /// @return True if it can decode it, false if it can't. bool IRrecv::decodeVestelAc(decode_results* results, uint16_t offset, const uint16_t nbits, const bool strict) { if (nbits % 8 != 0) // nbits has to be a multiple of nr. of bits in a byte. return false; if (strict) if (nbits != kVestelAcBits) return false; // Not strictly a Vestel AC message. uint64_t data = 0; if (nbits > sizeof(data) * 8) return false; // We can't possibly capture a Vestel packet that big. // Match Header + Data + Footer if (!matchGeneric(results->rawbuf + offset, &data, results->rawlen - offset, nbits, kVestelAcHdrMark, kVestelAcHdrSpace, kVestelAcBitMark, kVestelAcOneSpace, kVestelAcBitMark, kVestelAcZeroSpace, kVestelAcBitMark, 0, false, kVestelAcTolerance, kMarkExcess, false)) return false; // Compliance if (strict) if (!IRVestelAc::validChecksum(data)) return false; // Success results->decode_type = VESTEL_AC; results->bits = nbits; results->value = data; results->address = 0; results->command = 0; return true; } #endif // DECODE_VESTEL_AC