// Copyright 2009 Ken Shirriff // Copyright 2015 Mark Szabo // Copyright 2015 Sebastien Warin // Copyright 2017, 2019 David Conran #include "IRrecv.h" #include #ifndef UNIT_TEST #if defined(ESP8266) extern "C" { #include #include } #endif // ESP8266 #include #endif #include #ifdef UNIT_TEST #include #endif // UNIT_TEST #include "IRremoteESP8266.h" #include "IRutils.h" #ifdef UNIT_TEST #undef ICACHE_RAM_ATTR #define ICACHE_RAM_ATTR #endif #ifndef USE_IRAM_ATTR #if defined(ESP8266) #define USE_IRAM_ATTR ICACHE_RAM_ATTR #endif // ESP8266 #if defined(ESP32) #define USE_IRAM_ATTR IRAM_ATTR #endif // ESP32 #endif // USE_IRAM_ATTR #define ONCE 0 // Updated by David Conran (https://github.com/crankyoldgit) for receiving IR // code on ESP32 // Updated by Sebastien Warin (http://sebastien.warin.fr) for receiving IR code // on ESP8266 // Updated by markszabo (https://github.com/crankyoldgit/IRremoteESP8266) for // sending IR code on ESP8266 // Globals #ifndef UNIT_TEST #if defined(ESP8266) static ETSTimer timer; #endif // ESP8266 #if defined(ESP32) static hw_timer_t * timer = NULL; #endif // ESP32 #endif // UNIT_TEST #if defined(ESP32) portMUX_TYPE irremote_mux = portMUX_INITIALIZER_UNLOCKED; #endif // ESP32 volatile irparams_t irparams; irparams_t *irparams_save; // A copy of the interrupt state while decoding. #ifndef UNIT_TEST #if defined(ESP8266) static void USE_IRAM_ATTR read_timeout(void *arg __attribute__((unused))) { os_intr_lock(); #endif // ESP8266 #if defined(ESP32) static void USE_IRAM_ATTR read_timeout(void) { portENTER_CRITICAL(&irremote_mux); #endif // ESP32 if (irparams.rawlen) irparams.rcvstate = kStopState; #if defined(ESP8266) os_intr_unlock(); #endif // ESP8266 #if defined(ESP32) portEXIT_CRITICAL(&irremote_mux); #endif // ESP32 } static void USE_IRAM_ATTR gpio_intr() { uint32_t now = micros(); static uint32_t start = 0; #if defined(ESP8266) uint32_t gpio_status = GPIO_REG_READ(GPIO_STATUS_ADDRESS); os_timer_disarm(&timer); GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, gpio_status); #endif // ESP8266 // Grab a local copy of rawlen to reduce instructions used in IRAM. // This is an ugly premature optimisation code-wise, but we do everything we // can to save IRAM. // It seems referencing the value via the structure uses more instructions. // Less instructions means faster and less IRAM used. // N.B. It saves about 13 bytes of IRAM. uint16_t rawlen = irparams.rawlen; if (rawlen >= irparams.bufsize) { irparams.overflow = true; irparams.rcvstate = kStopState; } if (irparams.rcvstate == kStopState) return; if (irparams.rcvstate == kIdleState) { irparams.rcvstate = kMarkState; irparams.rawbuf[rawlen] = 1; } else { if (now < start) irparams.rawbuf[rawlen] = (UINT32_MAX - start + now) / kRawTick; else irparams.rawbuf[rawlen] = (now - start) / kRawTick; } irparams.rawlen++; start = now; #if defined(ESP8266) os_timer_arm(&timer, irparams.timeout, ONCE); #endif // ESP8266 #if defined(ESP32) timerWrite(timer, 0); // Reset the timeout. timerAlarmEnable(timer); #endif // ESP32 } #endif // UNIT_TEST // Start of IRrecv class ------------------- // Class constructor // Args: // recvpin: GPIO pin the IR receiver module's data pin is connected to. // bufsize: Nr. of entries to have in the capture buffer. (Default: kRawBuf) // timeout: Nr. of milli-Seconds of no signal before we stop capturing data. // (Default: kTimeoutMs) // save_buffer: Use a second (save) buffer to decode from. (Default: false) // timer_num: Which ESP32 timer number to use? ESP32 only, otherwise unused. // (Range: 0-3. Default: kDefaultESP32Timer) // Returns: // An IRrecv class object. #if defined(ESP32) IRrecv::IRrecv(const uint16_t recvpin, const uint16_t bufsize, const uint8_t timeout, const bool save_buffer, const uint8_t timer_num) { // There are only 4 timers. 0 to 3. _timer_num = std::min(timer_num, (uint8_t)3); #else // ESP32 IRrecv::IRrecv(const uint16_t recvpin, const uint16_t bufsize, const uint8_t timeout, const bool save_buffer) { #endif // ESP32 irparams.recvpin = recvpin; irparams.bufsize = bufsize; // Ensure we are going to be able to store all possible values in the // capture buffer. irparams.timeout = std::min(timeout, (uint8_t)kMaxTimeoutMs); irparams.rawbuf = new uint16_t[bufsize]; if (irparams.rawbuf == NULL) { DPRINTLN( "Could not allocate memory for the primary IR buffer.\n" "Try a smaller size for CAPTURE_BUFFER_SIZE.\nRebooting!"); #ifndef UNIT_TEST ESP.restart(); // Mem alloc failure. Reboot. #endif } // If we have been asked to use a save buffer (for decoding), then create one. if (save_buffer) { irparams_save = new irparams_t; irparams_save->rawbuf = new uint16_t[bufsize]; // Check we allocated the memory successfully. if (irparams_save->rawbuf == NULL) { DPRINTLN( "Could not allocate memory for the second IR buffer.\n" "Try a smaller size for CAPTURE_BUFFER_SIZE.\nRebooting!"); #ifndef UNIT_TEST ESP.restart(); // Mem alloc failure. Reboot. #endif } } else { irparams_save = NULL; } #if DECODE_HASH _unknown_threshold = kUnknownThreshold; #endif // DECODE_HASH _tolerance = kTolerance; } // Class destructor IRrecv::~IRrecv(void) { delete[] irparams.rawbuf; if (irparams_save != NULL) { delete[] irparams_save->rawbuf; delete irparams_save; } disableIRIn(); #if defined(ESP32) if (timer != NULL) timerEnd(timer); // Cleanup the ESP32 timeout timer. #endif // ESP32 } // Set up and (re)start the IR capture mechanism. // // Args: // pullup: A flag indicating should the GPIO use the internal pullup resistor. // (Default: `false`. i.e. No.) void IRrecv::enableIRIn(const bool pullup) { // ESP32's seem to require explicitly setting the GPIO to INPUT etc. // This wasn't required on the ESP8266s, but it shouldn't hurt to make sure. if (pullup) { #ifndef UNIT_TEST pinMode(irparams.recvpin, INPUT_PULLUP); } else { pinMode(irparams.recvpin, INPUT); #endif // UNIT_TEST } #if defined(ESP32) // Initialize the ESP32 timer. timer = timerBegin(_timer_num, 80, true); // 80MHz / 80 = 1 uSec granularity. // Set the timer so it only fires once, and set it's trigger in uSeconds. timerAlarmWrite(timer, MS_TO_USEC(irparams.timeout), ONCE); // Note: Interrupt needs to be attached before it can be enabled or disabled. timerAttachInterrupt(timer, &read_timeout, true); #endif // ESP32 // Initialize state machine variables resume(); #ifndef UNIT_TEST #if defined(ESP8266) // Initialize ESP8266 timer. os_timer_disarm(&timer); os_timer_setfn(&timer, reinterpret_cast(read_timeout), NULL); #endif // ESP8266 // Attach Interrupt attachInterrupt(irparams.recvpin, gpio_intr, CHANGE); #endif // UNIT_TEST } void IRrecv::disableIRIn(void) { #ifndef UNIT_TEST #if defined(ESP8266) os_timer_disarm(&timer); #endif // ESP8266 #if defined(ESP32) timerAlarmDisable(timer); #endif // ESP32 detachInterrupt(irparams.recvpin); #endif // UNIT_TEST } void IRrecv::resume(void) { irparams.rcvstate = kIdleState; irparams.rawlen = 0; irparams.overflow = false; #if defined(ESP32) timerAlarmDisable(timer); #endif // ESP32 } // Make a copy of the interrupt state & buffer data. // Needed because irparams is marked as volatile, thus memcpy() isn't allowed. // Only call this when you know the interrupt handlers won't modify anything. // i.e. In kStopState. // // Args: // src: Pointer to an irparams_t structure to copy from. // dst: Pointer to an irparams_t structure to copy to. void IRrecv::copyIrParams(volatile irparams_t *src, irparams_t *dst) { // Typecast src and dst addresses to (char *) char *csrc = (char *)src; // NOLINT(readability/casting) char *cdst = (char *)dst; // NOLINT(readability/casting) // Save the pointer to the destination's rawbuf so we don't lose it as // the for-loop/copy after this will overwrite it with src's rawbuf pointer. // This isn't immediately obvious due to typecasting/different variable names. uint16_t *dst_rawbuf_ptr; dst_rawbuf_ptr = dst->rawbuf; // Copy contents of src[] to dst[] for (uint16_t i = 0; i < sizeof(irparams_t); i++) cdst[i] = csrc[i]; // Restore the buffer pointer dst->rawbuf = dst_rawbuf_ptr; // Copy the rawbuf for (uint16_t i = 0; i < dst->bufsize; i++) dst->rawbuf[i] = src->rawbuf[i]; } // Obtain the maximum number of entries possible in the capture buffer. // i.e. It's size. uint16_t IRrecv::getBufSize(void) { return irparams.bufsize; } #if DECODE_HASH // Set the minimum length we will consider for reporting UNKNOWN message types. void IRrecv::setUnknownThreshold(const uint16_t length) { _unknown_threshold = length; } #endif // DECODE_HASH // Set the base tolerance percentage for matching incoming IR messages. void IRrecv::setTolerance(const uint8_t percent) { _tolerance = std::min(percent, (uint8_t)100); } // Get the base tolerance percentage for matching incoming IR messages. uint8_t IRrecv::getTolerance(void) { return _tolerance; } #if ENABLE_NOISE_FILTER_OPTION // Remove or merge pulses in the capture buffer that are too short. // Args: // results: Ptr to the decode_results we are going to filter/modify. // floor: Only allow values in the buffer large than this. (in micro seconds) void IRrecv::crudeNoiseFilter(decode_results *results, const uint16_t floor) { if (floor == 0) return; // Nothing to do. const uint16_t kTickFloor = floor / kRawTick; const uint16_t kBufSize = getBufSize(); uint16_t offset = kStartOffset; while (offset < results->rawlen && offset + 2 < kBufSize) { uint16_t curr = results->rawbuf[offset]; uint16_t next = results->rawbuf[offset + 1]; uint16_t addition = curr + next; if (curr < kTickFloor) { // Is it too short? // Shuffle the buffer down. i.e. Remove the mark & space pair. // Note: `memcpy()` can't be used as rawbuf is `volatile`. for (uint16_t i = offset + 2; i <= results->rawlen && i < kBufSize; i++) results->rawbuf[i - 2] = results->rawbuf[i]; if (offset > 1) { // There is a previous pair we can add to. // Merge this pair into into the previous space. results->rawbuf[offset - 1] += addition; } results->rawlen -= 2; // Adjust the length. } else { offset++; // Move along. } } } #endif // ENABLE_NOISE_FILTER_OPTION // Decodes the received IR message. // If the interrupt state is saved, we will immediately resume waiting // for the next IR message to avoid missing messages. // Note: There is a trade-off here. Saving the state means less time lost until // we can receiving the next message vs. using more RAM. Choose appropriately. // // Args: // results: A pointer to where the decoded IR message will be stored. // save: A pointer to an irparams_t instance in which to save // the interrupt's memory/state. NULL means don't save it. // max_skip: Maximum Nr. of pulses at the begining of a capture we can skip // when attempting to find a protocol we can successfully decode. // This parameter can dramatically improve detection of protocols // when there is light IR interference just before an incoming IR // message, however, it comes at a steep performace price. // CAUTION: Increasing this value will dramatically (linnearly) // increase the cpu time & usage to decode protocols. // e.g. 0 -> 1 will be a 2x increase in cpu usage/time. // 0 -> 2 will be a 3x increase etc. // If you are going to do this, consider disabling // protocol decoding for protocols you are not expecting. // (Default is 0. No skipping.) // noise_floor: Pulses below this size (in usecs) will be removed or merged // prior to any decoding. This is to try to remove noise/poor // readings & slighly increase the chances of a successful // decode but at the cost of data fidelity & integrity. // (Defaults to 0 usecs. i.e. Don't filter; which is safe!) // DANGER: **Here Be Dragons!** // If you set the `filter_floor` value too high, it **WILL** // break decoding of some protocols. You have been warned! // **Any** non-zero value has the potential to **cook** the // captured raw data. i.e. The data is going to lie to you. // It may obscure hardware, circuit, & environment issues thus // making it impossible to support you accurately or // confidently. // Values of <= 50 usecs will probably be safe. // 51 - 100 usecs **might** be okay. // 100 - 150 usecs is "Danger, Will Robinson!". // 150 - 200 usecs expect broken protocols. // At 200+ usecs, you **have** protocols you can't decode!! // // Returns: // A boolean indicating if an IR message is ready or not. bool IRrecv::decode(decode_results *results, irparams_t *save, uint8_t max_skip, uint16_t noise_floor) { // Proceed only if an IR message been received. #ifndef UNIT_TEST if (irparams.rcvstate != kStopState) return false; #endif // Clear the entry we are currently pointing to when we got the timeout. // i.e. Stopped collecting IR data. // It's junk as we never wrote an entry to it and can only confuse decoding. // This is done here rather than logically the best place in read_timeout() // as it saves a few bytes of ICACHE_RAM as that routine is bound to an // interrupt. decode() is not stored in ICACHE_RAM. // Another better option would be to zero the entire irparams.rawbuf[] on // resume() but that is a much more expensive operation compare to this. irparams.rawbuf[irparams.rawlen] = 0; bool resumed = false; // Flag indicating if we have resumed. // If we were requested to use a save buffer previously, do so. if (save == NULL) save = irparams_save; if (save == NULL) { // We haven't been asked to copy it so use the existing memory. #ifndef UNIT_TEST results->rawbuf = irparams.rawbuf; results->rawlen = irparams.rawlen; results->overflow = irparams.overflow; #endif } else { copyIrParams(&irparams, save); // Duplicate the interrupt's memory. resume(); // It's now safe to rearm. The IR message won't be overridden. resumed = true; // Point the results at the saved copy. results->rawbuf = save->rawbuf; results->rawlen = save->rawlen; results->overflow = save->overflow; } // Reset any previously partially processed results. results->decode_type = UNKNOWN; results->bits = 0; results->value = 0; results->address = 0; results->command = 0; results->repeat = false; #if ENABLE_NOISE_FILTER_OPTION crudeNoiseFilter(results, noise_floor); #endif // ENABLE_NOISE_FILTER_OPTION // Keep looking for protocols until we've run out of entries to skip or we // find a valid protocol message. for (uint16_t offset = kStartOffset; offset <= (max_skip * 2) + kStartOffset; offset += 2) { #if DECODE_AIWA_RC_T501 DPRINTLN("Attempting Aiwa RC T501 decode"); // Try decodeAiwaRCT501() before decodeSanyoLC7461() & decodeNEC() // because the protocols are similar. This protocol is more specific than // those ones, so should go before them. if (decodeAiwaRCT501(results, offset)) return true; #endif #if DECODE_SANYO DPRINTLN("Attempting Sanyo LC7461 decode"); // Try decodeSanyoLC7461() before decodeNEC() because the protocols are // similar in timings & structure, but the Sanyo one is much longer than the // NEC protocol (42 vs 32 bits) so this one should be tried first to try to // reduce false detection as a NEC packet. if (decodeSanyoLC7461(results, offset)) return true; #endif #if DECODE_CARRIER_AC DPRINTLN("Attempting Carrier AC decode"); // Try decodeCarrierAC() before decodeNEC() because the protocols are // similar in timings & structure, but the Carrier one is much longer than // the NEC protocol (3x32 bits vs 1x32 bits) so this one should be tried // first to try to reduce false detection as a NEC packet. if (decodeCarrierAC(results, offset)) return true; #endif #if DECODE_PIONEER DPRINTLN("Attempting Pioneer decode"); // Try decodePioneer() before decodeNEC() because the protocols are // similar in timings & structure, but the Pioneer one is much longer than // the NEC protocol (2x32 bits vs 1x32 bits) so this one should be tried // first to try to reduce false detection as a NEC packet. if (decodePioneer(results, offset)) return true; #endif #if DECODE_EPSON DPRINTLN("Attempting Epson decode"); // Try decodeEpson() before decodeNEC() because the protocols are // similar in timings & structure, but the Epson one is much longer than the // NEC protocol (3x32 identical bits vs 1x32 bits) so this one should be tried // first to try to reduce false detection as a NEC packet. if (decodeEpson(results, offset)) return true; #endif #if DECODE_NEC DPRINTLN("Attempting NEC decode"); if (decodeNEC(results, offset)) return true; #endif #if DECODE_SONY DPRINTLN("Attempting Sony decode"); if (decodeSony(results, offset)) return true; #endif #if DECODE_MITSUBISHI DPRINTLN("Attempting Mitsubishi decode"); if (decodeMitsubishi(results, offset)) return true; #endif #if DECODE_MITSUBISHI_AC DPRINTLN("Attempting Mitsubishi AC decode"); if (decodeMitsubishiAC(results, offset)) return true; #endif #if DECODE_MITSUBISHI2 DPRINTLN("Attempting Mitsubishi2 decode"); if (decodeMitsubishi2(results, offset)) return true; #endif #if DECODE_RC5 DPRINTLN("Attempting RC5 decode"); if (decodeRC5(results, offset)) return true; #endif #if DECODE_RC6 DPRINTLN("Attempting RC6 decode"); if (decodeRC6(results, offset)) return true; #endif #if DECODE_RCMM DPRINTLN("Attempting RC-MM decode"); if (decodeRCMM(results, offset)) return true; #endif #if DECODE_FUJITSU_AC // Fujitsu A/C needs to precede Panasonic and Denon as it has a short // message which looks exactly the same as a Panasonic/Denon message. DPRINTLN("Attempting Fujitsu A/C decode"); if (decodeFujitsuAC(results, offset)) return true; #endif #if DECODE_DENON // Denon needs to precede Panasonic as it is a special case of Panasonic. DPRINTLN("Attempting Denon decode"); if (decodeDenon(results, offset, kDenon48Bits) || decodeDenon(results, offset, kDenonBits) || decodeDenon(results, offset, kDenonLegacyBits)) return true; #endif #if DECODE_PANASONIC DPRINTLN("Attempting Panasonic decode"); if (decodePanasonic(results, offset)) return true; #endif #if DECODE_LG DPRINTLN("Attempting LG (28-bit) decode"); if (decodeLG(results, offset, kLgBits, true)) return true; DPRINTLN("Attempting LG (32-bit) decode"); // LG32 should be tried before Samsung if (decodeLG(results, offset, kLg32Bits, true)) return true; #endif #if DECODE_GICABLE // Note: Needs to happen before JVC decode, because it looks similar except // with a required NEC-like repeat code. DPRINTLN("Attempting GICable decode"); if (decodeGICable(results, offset)) return true; #endif #if DECODE_JVC DPRINTLN("Attempting JVC decode"); if (decodeJVC(results, offset)) return true; #endif #if DECODE_SAMSUNG DPRINTLN("Attempting SAMSUNG decode"); if (decodeSAMSUNG(results, offset)) return true; #endif #if DECODE_SAMSUNG36 DPRINTLN("Attempting Samsung36 decode"); if (decodeSamsung36(results, offset)) return true; #endif #if DECODE_WHYNTER DPRINTLN("Attempting Whynter decode"); if (decodeWhynter(results, offset)) return true; #endif #if DECODE_DISH DPRINTLN("Attempting DISH decode"); if (decodeDISH(results, offset)) return true; #endif #if DECODE_SHARP DPRINTLN("Attempting Sharp decode"); if (decodeSharp(results, offset)) return true; #endif #if DECODE_COOLIX DPRINTLN("Attempting Coolix decode"); if (decodeCOOLIX(results, offset)) return true; #endif #if DECODE_NIKAI DPRINTLN("Attempting Nikai decode"); if (decodeNikai(results, offset)) return true; #endif #if DECODE_KELVINATOR // Kelvinator based-devices use a similar code to Gree ones, to avoid false // matches this needs to happen before decodeGree(). DPRINTLN("Attempting Kelvinator decode"); if (decodeKelvinator(results, offset)) return true; #endif #if DECODE_DAIKIN DPRINTLN("Attempting Daikin decode"); if (decodeDaikin(results, offset)) return true; #endif #if DECODE_DAIKIN2 DPRINTLN("Attempting Daikin2 decode"); if (decodeDaikin2(results, offset)) return true; #endif #if DECODE_DAIKIN216 DPRINTLN("Attempting Daikin216 decode"); if (decodeDaikin216(results, offset)) return true; #endif #if DECODE_TOSHIBA_AC DPRINTLN("Attempting Toshiba AC decode"); if (decodeToshibaAC(results, offset)) return true; #endif #if DECODE_MIDEA DPRINTLN("Attempting Midea decode"); if (decodeMidea(results, offset)) return true; #endif #if DECODE_MAGIQUEST DPRINTLN("Attempting Magiquest decode"); if (decodeMagiQuest(results, offset)) return true; #endif /* NOTE: Disabled due to poor quality. #if DECODE_SANYO // The Sanyo S866500B decoder is very poor quality & depricated. // *IF* you are going to enable it, do it near last to avoid false positive // matches. DPRINTLN("Attempting Sanyo SA8650B decode"); if (decodeSanyo(results, offset)) return true; #endif */ #if DECODE_NEC // Some devices send NEC-like codes that don't follow the true NEC spec. // This should detect those. e.g. Apple TV remote etc. // This needs to be done after all other codes that use strict and some // other protocols that are NEC-like as well, as turning off strict may // cause this to match other valid protocols. DPRINTLN("Attempting NEC (non-strict) decode"); if (decodeNEC(results, offset, kNECBits, false)) { results->decode_type = NEC_LIKE; return true; } #endif #if DECODE_LASERTAG DPRINTLN("Attempting Lasertag decode"); if (decodeLasertag(results, offset)) return true; #endif #if DECODE_GREE // Gree based-devices use a similar code to Kelvinator ones, to avoid false // matches this needs to happen after decodeKelvinator(). DPRINTLN("Attempting Gree decode"); if (decodeGree(results, offset)) return true; #endif #if DECODE_HAIER_AC DPRINTLN("Attempting Haier AC decode"); if (decodeHaierAC(results, offset)) return true; #endif #if DECODE_HAIER_AC_YRW02 DPRINTLN("Attempting Haier AC YR-W02 decode"); if (decodeHaierACYRW02(results, offset)) return true; #endif #if DECODE_HITACHI_AC424 // HitachiAc424 should be checked before HitachiAC, HitachiAC2, // & HitachiAC184 DPRINTLN("Attempting Hitachi AC 424 decode"); if (decodeHitachiAc424(results, offset, kHitachiAc424Bits)) return true; #endif // DECODE_HITACHI_AC424 #if DECODE_MITSUBISHI136 // Needs to happen before HitachiAc3 decode. DPRINTLN("Attempting Mitsubishi136 decode"); if (decodeMitsubishi136(results, offset)) return true; #endif // DECODE_MITSUBISHI136 #if DECODE_HITACHI_AC3 // HitachiAc3 should be checked before HitachiAC & HitachiAC2 // Attempt normal before the short version. DPRINTLN("Attempting Hitachi AC3 decode"); // Order these in decreasing bit size, as it is more optimal. if (decodeHitachiAc3(results, offset, kHitachiAc3Bits) || decodeHitachiAc3(results, offset, kHitachiAc3Bits - 4 * 8) || decodeHitachiAc3(results, offset, kHitachiAc3Bits - 6 * 8) || decodeHitachiAc3(results, offset, kHitachiAc3MinBits + 2 * 8) || decodeHitachiAc3(results, offset, kHitachiAc3MinBits)) return true; #endif // DECODE_HITACHI_AC3 #if DECODE_HITACHI_AC2 // HitachiAC2 should be checked before HitachiAC DPRINTLN("Attempting Hitachi AC2 decode"); if (decodeHitachiAC(results, offset, kHitachiAc2Bits)) return true; #endif // DECODE_HITACHI_AC2 #if DECODE_HITACHI_AC DPRINTLN("Attempting Hitachi AC decode"); if (decodeHitachiAC(results, offset, kHitachiAcBits)) return true; #endif #if DECODE_HITACHI_AC1 DPRINTLN("Attempting Hitachi AC1 decode"); if (decodeHitachiAC(results, offset, kHitachiAc1Bits)) return true; #endif #if DECODE_WHIRLPOOL_AC DPRINTLN("Attempting Whirlpool AC decode"); if (decodeWhirlpoolAC(results, offset)) return true; #endif #if DECODE_SAMSUNG_AC DPRINTLN("Attempting Samsung AC (extended) decode"); // Check the extended size first, as it should fail fast due to longer // length. if (decodeSamsungAC(results, offset, kSamsungAcExtendedBits, false)) return true; // Now check for the more common length. DPRINTLN("Attempting Samsung AC decode"); if (decodeSamsungAC(results, offset, kSamsungAcBits)) return true; #endif #if DECODE_ELECTRA_AC DPRINTLN("Attempting Electra AC decode"); if (decodeElectraAC(results, offset)) return true; #endif #if DECODE_PANASONIC_AC DPRINTLN("Attempting Panasonic AC decode"); if (decodePanasonicAC(results, offset)) return true; DPRINTLN("Attempting Panasonic AC short decode"); if (decodePanasonicAC(results, offset, kPanasonicAcShortBits)) return true; #endif #if DECODE_LUTRON DPRINTLN("Attempting Lutron decode"); if (decodeLutron(results, offset)) return true; #endif #if DECODE_MWM DPRINTLN("Attempting MWM decode"); if (decodeMWM(results, offset)) return true; #endif #if DECODE_VESTEL_AC DPRINTLN("Attempting Vestel AC decode"); if (decodeVestelAc(results, offset)) return true; #endif #if DECODE_MITSUBISHI112 || DECODE_TCL112AC // Mitsubish112 and Tcl112 share the same decoder. DPRINTLN("Attempting Mitsubishi112/TCL112AC decode"); if (decodeMitsubishi112(results, offset)) return true; #endif // DECODE_MITSUBISHI112 || DECODE_TCL112AC #if DECODE_TECO DPRINTLN("Attempting Teco decode"); if (decodeTeco(results, offset)) return true; #endif #if DECODE_LEGOPF DPRINTLN("Attempting LEGOPF decode"); if (decodeLegoPf(results, offset)) return true; #endif #if DECODE_MITSUBISHIHEAVY DPRINTLN("Attempting MITSUBISHIHEAVY (152 bit) decode"); if (decodeMitsubishiHeavy(results, offset, kMitsubishiHeavy152Bits)) return true; DPRINTLN("Attempting MITSUBISHIHEAVY (88 bit) decode"); if (decodeMitsubishiHeavy(results, offset, kMitsubishiHeavy88Bits)) return true; #endif #if DECODE_ARGO DPRINTLN("Attempting Argo decode"); if (decodeArgo(results, offset)) return true; #endif // DECODE_ARGO #if DECODE_SHARP_AC DPRINTLN("Attempting SHARP_AC decode"); if (decodeSharpAc(results, offset)) return true; #endif #if DECODE_GOODWEATHER DPRINTLN("Attempting GOODWEATHER decode"); if (decodeGoodweather(results, offset)) return true; #endif // DECODE_GOODWEATHER #if DECODE_INAX DPRINTLN("Attempting Inax decode"); if (decodeInax(results, offset)) return true; #endif // DECODE_INAX #if DECODE_TROTEC DPRINTLN("Attempting Trotec decode"); if (decodeTrotec(results, offset)) return true; #endif // DECODE_TROTEC #if DECODE_DAIKIN160 DPRINTLN("Attempting Daikin160 decode"); if (decodeDaikin160(results, offset)) return true; #endif // DECODE_DAIKIN160 #if DECODE_NEOCLIMA DPRINTLN("Attempting Neoclima decode"); if (decodeNeoclima(results, offset)) return true; #endif // DECODE_NEOCLIMA #if DECODE_DAIKIN176 DPRINTLN("Attempting Daikin176 decode"); if (decodeDaikin176(results, offset)) return true; #endif // DECODE_DAIKIN176 #if DECODE_DAIKIN128 DPRINTLN("Attempting Daikin128 decode"); if (decodeDaikin128(results, offset)) return true; #endif // DECODE_DAIKIN128 #if DECODE_AMCOR DPRINTLN("Attempting Amcor decode"); if (decodeAmcor(results, offset)) return true; #endif // DECODE_AMCOR #if DECODE_DAIKIN152 DPRINTLN("Attempting Daikin152 decode"); if (decodeDaikin152(results, offset)) return true; #endif // DECODE_DAIKIN152 #if DECODE_SYMPHONY DPRINTLN("Attempting Symphony decode"); if (decodeSymphony(results, offset)) return true; #endif // DECODE_SYMPHONY #if DECODE_DAIKIN64 DPRINTLN("Attempting Daikin64 decode"); if (decodeDaikin64(results, offset)) return true; #endif // DECODE_DAIKIN64 #if DECODE_AIRWELL DPRINTLN("Attempting Airwell decode"); if (decodeAirwell(results, offset)) return true; #endif // DECODE_AIRWELL // Typically new protocols are added above this line. } #if DECODE_HASH // decodeHash returns a hash on any input. // Thus, it needs to be last in the list. // If you add any decodes, add them before this. if (decodeHash(results)) { return true; } #endif // DECODE_HASH // Throw away and start over if (!resumed) // Check if we have already resumed. resume(); return false; } // Convert the tolerance percentage into something valid. uint8_t IRrecv::_validTolerance(const uint8_t percentage) { return (percentage > 100) ? _tolerance : percentage; } // Calculate the lower bound of the nr. of ticks. // // Args: // usecs: Nr. of uSeconds. // tolerance: Percent as an integer. e.g. 10 is 10% // delta: A non-scaling amount to reduce usecs by. // Returns: // Nr. of ticks. uint32_t IRrecv::ticksLow(const uint32_t usecs, const uint8_t tolerance, const uint16_t delta) { // max() used to ensure the result can't drop below 0 before the cast. return ((uint32_t)std::max( (int32_t)(usecs * (1.0 - _validTolerance(tolerance) / 100.0) - delta), 0)); } // Calculate the upper bound of the nr. of ticks. // // Args: // usecs: Nr. of uSeconds. // tolerance: Percent as an integer. e.g. 10 is 10% // delta: A non-scaling amount to increase usecs by. // Returns: // Nr. of ticks. uint32_t IRrecv::ticksHigh(const uint32_t usecs, const uint8_t tolerance, const uint16_t delta) { return ((uint32_t)(usecs * (1.0 + _validTolerance(tolerance) / 100.0)) + 1 + delta); } // Check if we match a pulse(measured) with the desired within // +/-tolerance percent and/or +/- a fixed delta range. // // Args: // measured: The recorded period of the signal pulse. // desired: The expected period (in useconds) we are matching against. // tolerance: A percentage expressed as an integer. e.g. 10 is 10%. // delta: A non-scaling (+/-) error margin (in useconds). // // Returns: // Boolean: true if it matches, false if it doesn't. bool IRrecv::match(uint32_t measured, uint32_t desired, uint8_t tolerance, uint16_t delta) { measured *= kRawTick; // Convert to uSecs. DPRINT("Matching: "); DPRINT(ticksLow(desired, tolerance, delta)); DPRINT(" <= "); DPRINT(measured); DPRINT(" <= "); DPRINTLN(ticksHigh(desired, tolerance, delta)); #ifdef UNIT_TEST // Sanity checks that we don't have values that cause integer over/underflow. // Only performed during testing so there is no performance hit in normal // operation. assert(ticksLow(desired, tolerance, delta) <= desired); // Check if we overflowed. (UINT32_MAX >> 3 is approx 9 minutes!) assert(ticksHigh(desired, tolerance, delta) < UINT32_MAX >> 3); // Check if our high mark is below where we started. This could happen. // If there is a legit case, then this should be removed. assert(ticksHigh(desired, tolerance, delta) >= desired); #endif // UNIT_TEST return (measured >= ticksLow(desired, tolerance, delta) && measured <= ticksHigh(desired, tolerance, delta)); } // Check if we match a pulse(measured) of at least desired within // tolerance percent and/or a fixed delta margin. // // Args: // measured: The recorded period of the signal pulse. // desired: The expected period (in useconds) we are matching against. // tolerance: A percentage expressed as an integer. e.g. 10 is 10%. // delta: A non-scaling amount to reduce usecs by. // // Returns: // Boolean: true if it matches, false if it doesn't. bool IRrecv::matchAtLeast(uint32_t measured, uint32_t desired, uint8_t tolerance, uint16_t delta) { measured *= kRawTick; // Convert to uSecs. DPRINT("Matching ATLEAST "); DPRINT(measured); DPRINT(" vs "); DPRINT(desired); DPRINT(". Matching: "); DPRINT(measured); DPRINT(" >= "); DPRINT(ticksLow(std::min(desired, MS_TO_USEC(irparams.timeout)), tolerance, delta)); DPRINT(" [min("); DPRINT(ticksLow(desired, tolerance, delta)); DPRINT(", "); DPRINT(ticksLow(MS_TO_USEC(irparams.timeout), tolerance, delta)); DPRINTLN(")]"); #ifdef UNIT_TEST // Sanity checks that we don't have values that cause integer over/underflow. // Only performed during testing so there is no performance hit in normal // operation. assert(ticksLow(desired, tolerance, delta) <= desired); // Check if we overflowed. (UINT32_MAX >> 3 is approx 9 minutes!) assert(ticksHigh(desired, tolerance, delta) < UINT32_MAX >> 3); // Check if our high mark is below where we started. This could happen. // If there is a legit case, then this should be removed. assert(ticksHigh(desired, tolerance, delta) >= desired); #endif // UNIT_TEST // We really should never get a value of 0, except as the last value // in the buffer. If that is the case, then assume infinity and return true. if (measured == 0) return true; return measured >= ticksLow(std::min(desired, MS_TO_USEC(irparams.timeout)), tolerance, delta); } // Check if we match a mark signal(measured) with the desired within // +/-tolerance percent, after an expected is excess is added. // // Args: // measured: The recorded period of the signal pulse. // desired: The expected period (in useconds) we are matching against. // tolerance: A percentage expressed as an integer. e.g. 10 is 10%. // excess: Nr. of useconds. // // Returns: // Boolean: true if it matches, false if it doesn't. bool IRrecv::matchMark(uint32_t measured, uint32_t desired, uint8_t tolerance, int16_t excess) { DPRINT("Matching MARK "); DPRINT(measured * kRawTick); DPRINT(" vs "); DPRINT(desired); DPRINT(" + "); DPRINT(excess); DPRINT(". "); return match(measured, desired + excess, tolerance); } // Check if we match a space signal(measured) with the desired within // +/-tolerance percent, after an expected is excess is removed. // // Args: // measured: The recorded period of the signal pulse. // desired: The expected period (in useconds) we are matching against. // tolerance: A percentage expressed as an integer. e.g. 10 is 10%. // excess: Nr. of useconds. // // Returns: // Boolean: true if it matches, false if it doesn't. bool IRrecv::matchSpace(uint32_t measured, uint32_t desired, uint8_t tolerance, int16_t excess) { DPRINT("Matching SPACE "); DPRINT(measured * kRawTick); DPRINT(" vs "); DPRINT(desired); DPRINT(" - "); DPRINT(excess); DPRINT(". "); return match(measured, desired - excess, tolerance); } /* ----------------------------------------------------------------------- * hashdecode - decode an arbitrary IR code. * Instead of decoding using a standard encoding scheme * (e.g. Sony, NEC, RC5), the code is hashed to a 32-bit value. * * The algorithm: look at the sequence of MARK signals, and see if each one * is shorter (0), the same length (1), or longer (2) than the previous. * Do the same with the SPACE signals. Hash the resulting sequence of 0's, * 1's, and 2's to a 32-bit value. This will give a unique value for each * different code (probably), for most code systems. * * http://arcfn.com/2010/01/using-arbitrary-remotes-with-arduino.html */ // Compare two tick values, returning 0 if newval is shorter, // 1 if newval is equal, and 2 if newval is longer // Use a tolerance of 20% uint16_t IRrecv::compare(const uint16_t oldval, const uint16_t newval) { if (newval < oldval * 0.8) return 0; else if (oldval < newval * 0.8) return 2; else return 1; } #if DECODE_HASH /* Converts the raw code values into a 32-bit hash code. * Hopefully this code is unique for each button. * This isn't a "real" decoding, just an arbitrary value. */ bool IRrecv::decodeHash(decode_results *results) { // Require at least some samples to prevent triggering on noise if (results->rawlen < _unknown_threshold) return false; int32_t hash = kFnvBasis32; // 'rawlen - 2' to avoid the look ahead from going out of bounds. // Should probably be -3 to avoid comparing the trailing space entry, // however it is left this way for compatibility with previously captured // values. for (uint16_t i = 1; i < results->rawlen - 2; i++) { uint16_t value = compare(results->rawbuf[i], results->rawbuf[i + 2]); // Add value into the hash hash = (hash * kFnvPrime32) ^ value; } results->value = hash & 0xFFFFFFFF; results->bits = results->rawlen / 2; results->address = 0; results->command = 0; results->decode_type = UNKNOWN; return true; } #endif // DECODE_HASH // Match & decode the typical data section of an IR message. // The data value is stored in the least significant bits reguardless of the // bit ordering requested. // // Args: // data_ptr: A pointer to where we are at in the capture buffer. // nbits: Nr. of data bits we expect. // onemark: Nr. of uSeconds in an expected mark signal for a '1' bit. // onespace: Nr. of uSeconds in an expected space signal for a '1' bit. // zeromark: Nr. of uSeconds in an expected mark signal for a '0' bit. // zerospace: Nr. of uSeconds in an expected space signal for a '0' bit. // tolerance: Percentage error margin to allow. (Def: kUseDefTol) // excess: Nr. of useconds. (Def: kMarkExcess) // MSBfirst: Bit order to save the data in. (Def: true) // Returns: // A match_result_t structure containing the success (or not), the data value, // and how many buffer entries were used. match_result_t IRrecv::matchData( volatile uint16_t *data_ptr, const uint16_t nbits, const uint16_t onemark, const uint32_t onespace, const uint16_t zeromark, const uint32_t zerospace, const uint8_t tolerance, const int16_t excess, const bool MSBfirst) { match_result_t result; result.success = false; // Fail by default. result.data = 0; for (result.used = 0; result.used < nbits * 2; result.used += 2, data_ptr += 2) { // Is the bit a '1'? if (matchMark(*data_ptr, onemark, tolerance, excess) && matchSpace(*(data_ptr + 1), onespace, tolerance, excess)) { result.data = (result.data << 1) | 1; } else if (matchMark(*data_ptr, zeromark, tolerance, excess) && matchSpace(*(data_ptr + 1), zerospace, tolerance, excess)) { result.data <<= 1; // The bit is a '0'. } else { if (!MSBfirst) result.data = reverseBits(result.data, result.used / 2); return result; // It's neither, so fail. } } result.success = true; if (!MSBfirst) result.data = reverseBits(result.data, nbits); return result; } // Match & decode the typical data section of an IR message. // The bytes are stored at result_ptr. The first byte in the result equates to // the first byte encountered, and so on. // // Args: // data_ptr: A pointer to where we are at in the capture buffer. // result_ptr: A pointer to where to start storing the bytes we decoded. // remaining: The size of the capture buffer are remaining. // nbytes: Nr. of data bytes we expect. // onemark: Nr. of uSeconds in an expected mark signal for a '1' bit. // onespace: Nr. of uSeconds in an expected space signal for a '1' bit. // zeromark: Nr. of uSeconds in an expected mark signal for a '0' bit. // zerospace: Nr. of uSeconds in an expected space signal for a '0' bit. // tolerance: Percentage error margin to allow. (Def: kUseDefTol) // excess: Nr. of useconds. (Def: kMarkExcess) // MSBfirst: Bit order to save the data in. (Def: true) // Returns: // A uint16_t: If successful, how many buffer entries were used. Otherwise 0. uint16_t IRrecv::matchBytes(volatile uint16_t *data_ptr, uint8_t *result_ptr, const uint16_t remaining, const uint16_t nbytes, const uint16_t onemark, const uint32_t onespace, const uint16_t zeromark, const uint32_t zerospace, const uint8_t tolerance, const int16_t excess, const bool MSBfirst) { // Check if there is enough capture buffer to possibly have the desired bytes. if (remaining < nbytes * 8 * 2) return 0; // Nope, so abort. uint16_t offset = 0; for (uint16_t byte_pos = 0; byte_pos < nbytes; byte_pos++) { match_result_t result = matchData(data_ptr + offset, 8, onemark, onespace, zeromark, zerospace, tolerance, excess, MSBfirst); if (result.success == false) return 0; // Fail result_ptr[byte_pos] = (uint8_t)result.data; offset += result.used; } return offset; } // Match & decode a generic/typical IR message. // The data is stored in result_bits_ptr or result_bytes_ptr depending on flag // `use_bits`. // Values of 0 for hdrmark, hdrspace, footermark, or footerspace mean skip // that requirement. // // Args: // data_ptr: A pointer to where we are at in the capture buffer. // result_bits_ptr: A pointer to where to start storing the bits we decoded. // result_bytes_ptr: A pointer to where to start storing the bytes we decoded. // use_bits: A flag indicating if we are to decode bits or bytes. // remaining: The size of the capture buffer are remaining. // nbits: Nr. of data bits we expect. // hdrmark: Nr. of uSeconds for the expected header mark signal. // hdrspace: Nr. of uSeconds for the expected header space signal. // onemark: Nr. of uSeconds in an expected mark signal for a '1' bit. // onespace: Nr. of uSeconds in an expected space signal for a '1' bit. // zeromark: Nr. of uSeconds in an expected mark signal for a '0' bit. // zerospace: Nr. of uSeconds in an expected space signal for a '0' bit. // footermark: Nr. of uSeconds for the expected footer mark signal. // footerspace: Nr. of uSeconds for the expected footer space/gap signal. // atleast: Is the match on the footerspace a matchAtLeast or matchSpace? // tolerance: Percentage error margin to allow. (Def: kUseDefTol) // excess: Nr. of useconds. (Def: kMarkExcess) // MSBfirst: Bit order to save the data in. (Def: true) // Returns: // A uint16_t: If successful, how many buffer entries were used. Otherwise 0. uint16_t IRrecv::_matchGeneric(volatile uint16_t *data_ptr, uint64_t *result_bits_ptr, uint8_t *result_bytes_ptr, const bool use_bits, const uint16_t remaining, const uint16_t nbits, const uint16_t hdrmark, const uint32_t hdrspace, const uint16_t onemark, const uint32_t onespace, const uint16_t zeromark, const uint32_t zerospace, const uint16_t footermark, const uint32_t footerspace, const bool atleast, const uint8_t tolerance, const int16_t excess, const bool MSBfirst) { // If we are expecting byte sizes, check it's a factor of 8 or fail. if (!use_bits && nbits % 8 != 0) return 0; // Calculate how much remaining buffer is required. uint16_t min_remaining = nbits * 2; if (hdrmark) min_remaining++; if (hdrspace) min_remaining++; if (footermark) min_remaining++; // Don't need to extend for footerspace because it could be the end of message // Check if there is enough capture buffer to possibly have the message. if (remaining < min_remaining) return 0; // Nope, so abort. uint16_t offset = 0; // Header if (hdrmark && !matchMark(*(data_ptr + offset++), hdrmark, tolerance, excess)) return 0; if (hdrspace && !matchSpace(*(data_ptr + offset++), hdrspace, tolerance, excess)) return 0; // Data if (use_bits) { // Bits. match_result_t result = IRrecv::matchData(data_ptr + offset, nbits, onemark, onespace, zeromark, zerospace, tolerance, excess, MSBfirst); if (!result.success) return 0; *result_bits_ptr = result.data; offset += result.used; } else { // bytes uint16_t data_used = IRrecv::matchBytes(data_ptr + offset, result_bytes_ptr, remaining - offset, nbits / 8, onemark, onespace, zeromark, zerospace, tolerance, excess, MSBfirst); if (!data_used) return 0; offset += data_used; } // Footer if (footermark && !matchMark(*(data_ptr + offset++), footermark, tolerance, excess)) return 0; // If we have something still to match & haven't reached the end of the buffer if (footerspace && offset < remaining) { if (atleast) { if (!matchAtLeast(*(data_ptr + offset), footerspace, tolerance, excess)) return 0; } else { if (!matchSpace(*(data_ptr + offset), footerspace, tolerance, excess)) return 0; } offset++; } return offset; } // Match & decode a generic/typical <= 64bit IR message. // The data is stored at result_ptr. // Values of 0 for hdrmark, hdrspace, footermark, or footerspace mean skip // that requirement. // // Args: // data_ptr: A pointer to where we are at in the capture buffer. // result_ptr: A pointer to where to start storing the bits we decoded. // remaining: The size of the capture buffer are remaining. // nbits: Nr. of data bits we expect. // hdrmark: Nr. of uSeconds for the expected header mark signal. // hdrspace: Nr. of uSeconds for the expected header space signal. // onemark: Nr. of uSeconds in an expected mark signal for a '1' bit. // onespace: Nr. of uSeconds in an expected space signal for a '1' bit. // zeromark: Nr. of uSeconds in an expected mark signal for a '0' bit. // zerospace: Nr. of uSeconds in an expected space signal for a '0' bit. // footermark: Nr. of uSeconds for the expected footer mark signal. // footerspace: Nr. of uSeconds for the expected footer space/gap signal. // atleast: Is the match on the footerspace a matchAtLeast or matchSpace? // tolerance: Percentage error margin to allow. (Def: kUseDefTol) // excess: Nr. of useconds. (Def: kMarkExcess) // MSBfirst: Bit order to save the data in. (Def: true) // Returns: // A uint16_t: If successful, how many buffer entries were used. Otherwise 0. uint16_t IRrecv::matchGeneric(volatile uint16_t *data_ptr, uint64_t *result_ptr, const uint16_t remaining, const uint16_t nbits, const uint16_t hdrmark, const uint32_t hdrspace, const uint16_t onemark, const uint32_t onespace, const uint16_t zeromark, const uint32_t zerospace, const uint16_t footermark, const uint32_t footerspace, const bool atleast, const uint8_t tolerance, const int16_t excess, const bool MSBfirst) { return _matchGeneric(data_ptr, result_ptr, NULL, true, remaining, nbits, hdrmark, hdrspace, onemark, onespace, zeromark, zerospace, footermark, footerspace, atleast, tolerance, excess, MSBfirst); } // Match & decode a generic/typical > 64bit IR message. // The bytes are stored at result_ptr. The first byte in the result equates to // the first byte encountered, and so on. // Values of 0 for hdrmark, hdrspace, footermark, or footerspace mean skip // that requirement. // // Args: // data_ptr: A pointer to where we are at in the capture buffer. // result_ptr: A pointer to where to start storing the bytes we decoded. // remaining: The size of the capture buffer are remaining. // nbits: Nr. of data bits we expect. // hdrmark: Nr. of uSeconds for the expected header mark signal. // hdrspace: Nr. of uSeconds for the expected header space signal. // onemark: Nr. of uSeconds in an expected mark signal for a '1' bit. // onespace: Nr. of uSeconds in an expected space signal for a '1' bit. // zeromark: Nr. of uSeconds in an expected mark signal for a '0' bit. // zerospace: Nr. of uSeconds in an expected space signal for a '0' bit. // footermark: Nr. of uSeconds for the expected footer mark signal. // footerspace: Nr. of uSeconds for the expected footer space/gap signal. // atleast: Is the match on the footerspace a matchAtLeast or matchSpace? // tolerance: Percentage error margin to allow. (Def: kUseDefTol) // excess: Nr. of useconds. (Def: kMarkExcess) // MSBfirst: Bit order to save the data in. (Def: true) // Returns: // A uint16_t: If successful, how many buffer entries were used. Otherwise 0. uint16_t IRrecv::matchGeneric(volatile uint16_t *data_ptr, uint8_t *result_ptr, const uint16_t remaining, const uint16_t nbits, const uint16_t hdrmark, const uint32_t hdrspace, const uint16_t onemark, const uint32_t onespace, const uint16_t zeromark, const uint32_t zerospace, const uint16_t footermark, const uint32_t footerspace, const bool atleast, const uint8_t tolerance, const int16_t excess, const bool MSBfirst) { return _matchGeneric(data_ptr, NULL, result_ptr, false, remaining, nbits, hdrmark, hdrspace, onemark, onespace, zeromark, zerospace, footermark, footerspace, atleast, tolerance, excess, MSBfirst); } // Match & decode a Manchester Code <= 64bit IR message. // The data is stored at result_ptr. // Values of 0 for hdrmark, hdrspace, footermark, or footerspace mean skip // that requirement. // // Args: // data_ptr: A pointer to where we are at in the capture buffer. // NOTE: It is assumed to be pointing to a "Mark", not a "Space". // result_ptr: A pointer to where to start storing the bits we decoded. // remaining: The size of the capture buffer are remaining. // nbits: Nr. of data bits we expect. // hdrmark: Nr. of uSeconds for the expected header mark signal. // hdrspace: Nr. of uSeconds for the expected header space signal. // half_period: Nr. of uSeconds for half the clock's period. (1/2 wavelength) // footermark: Nr. of uSeconds for the expected footer mark signal. // footerspace: Nr. of uSeconds for the expected footer space/gap signal. // atleast: Is the match on the footerspace a matchAtLeast or matchSpace? // tolerance: Percentage error margin to allow. (Def: kUseDefTol) // excess: Nr. of useconds. (Def: kMarkExcess) // MSBfirst: Bit order to save the data in. (Def: true) // GEThomas: Use G.E. Thomas (true/default) or IEEE 802.3 (false) convention? // Returns: // A uint16_t: If successful, how many buffer entries were used. Otherwise 0. // // Ref: // https://en.wikipedia.org/wiki/Manchester_code // http://ww1.microchip.com/downloads/en/AppNotes/Atmel-9164-Manchester-Coding-Basics_Application-Note.pdf uint16_t IRrecv::matchManchester(volatile const uint16_t *data_ptr, uint64_t *result_ptr, const uint16_t remaining, const uint16_t nbits, const uint16_t hdrmark, const uint32_t hdrspace, const uint16_t half_period, const uint16_t footermark, const uint32_t footerspace, const bool atleast, const uint8_t tolerance, const int16_t excess, const bool MSBfirst, const bool GEThomas) { uint16_t offset = 0; uint64_t data = 0; uint16_t nr_of_half_periods = GEThomas; // 2 per bit, and 4 extra for the timing sync. uint16_t expected_half_periods = 2 * nbits + 4; bool currentBit = false; // Calculate how much remaining buffer is required. // Shortest case. Longest case is 2 * nbits. uint16_t min_remaining = nbits + 2; if (hdrmark) min_remaining++; if (hdrspace) min_remaining++; if (footermark) min_remaining++; // Don't need to extend for footerspace because it could be the end of message // Check if there is enough capture buffer to possibly have the message. if (remaining < min_remaining) return 0; // Nope, so abort. // Header if (hdrmark && !matchMark(*(data_ptr + offset++), hdrmark, tolerance, excess)) return 0; // Manchester Code always has a guaranteed 2x half_period (T2) at the start // of the data section. e.g. a sync header. If it is a GEThomas-style, then // it is space(T);mark(2xT);space(T), thus we need to check for that space // plus any requested "header" space. if ((hdrspace || GEThomas) && !matchSpace(*(data_ptr + offset++), hdrspace + ((GEThomas) ? half_period : 0), tolerance, excess)) return 0; // Data // Loop until we find a 'long' pulse. This is the timing sync per protocol. while ((offset < remaining) && (nr_of_half_periods < expected_half_periods) && !match(*(data_ptr + offset), half_period * 2, tolerance, excess)) { // Was it not a short pulse? if (!match(*(data_ptr + offset), half_period, tolerance, excess)) return 0; nr_of_half_periods++; offset++; } // Data (cont.) // We are now pointing to the first 'long' pulse. // Loop through the buffer till we run out of buffer, or nr of half periods. while (offset < remaining && nr_of_half_periods < expected_half_periods) { // Only if there is enough half_periods left for a long pulse & // Is it a 'long' pulse? if (nr_of_half_periods < expected_half_periods - 1 && match(*(data_ptr + offset), half_period * 2, tolerance, excess)) { // Yes, so invert the value we will append. currentBit = !currentBit; nr_of_half_periods += 2; // A 'long' pulse is two half periods. offset++; // Append the bit value. data <<= 1; data |= currentBit; } else if (match(*(data_ptr + offset), half_period, tolerance, excess)) { // or is it part of a 'short' pulse pair? nr_of_half_periods++; offset++; // Look for the second half of the 'short' pulse pair. // Do we have enough buffer or nr of half periods? if (offset < remaining && nr_of_half_periods < expected_half_periods) { // We do, so look for it. if (match(*(data_ptr + offset), half_period, tolerance, excess)) { // Found it! nr_of_half_periods++; // No change of the polarity of the bit we will append. // Append the bit value. data <<= 1; data |= currentBit; offset++; } else { // It's not what we expected. return 0; } } } else if (nr_of_half_periods == expected_half_periods - 1 && matchAtLeast(*(data_ptr + offset), half_period, tolerance, excess)) { // Special case when we are at the end of the expected nr of periods. // i.e. The pulse could be merged with the footer. nr_of_half_periods++; break; } else { // It's neither, so abort. return 0; } } // Did we collect the expected amount of data? if (nr_of_half_periods < expected_half_periods) return 0; // Footer if (footermark && !(matchMark(*(data_ptr + offset), footermark + half_period, tolerance, excess) || matchMark(*(data_ptr + offset), footermark, tolerance, excess))) return 0; offset++; // If we have something still to match & haven't reached the end of the buffer if (footerspace && offset < remaining) { if (atleast) { if (!matchAtLeast(*(data_ptr + offset), footerspace, tolerance, excess)) return 0; } else { if (!matchSpace(*(data_ptr + offset), footerspace, tolerance, excess)) return 0; } offset++; } // Clean up and process the data. if (!MSBfirst) data = reverseBits(data, nbits); // Trim the data to size to remove timing sync. *result_ptr = GETBITS64(data, 0, nbits); return offset; } // End of IRrecv class -------------------