/* An Arduino sketch to emulate IR Daikin ARC433** & ARC477A1 remote control unit Read more at: http://harizanov.com/2012/02/control-daikin-air-conditioner-over-the-internet/ Copyright 2016 sillyfrog Copyright 2017 sillyfrog, crankyoldgit Copyright 2018-2019 crankyoldgit Copyright 2019 pasna (IRDaikin160 class / Daikin176 class) */ #include "ir_Daikin.h" #include #include #ifndef ARDUINO #include #endif #include "IRrecv.h" #include "IRremoteESP8266.h" #include "IRsend.h" #ifdef UNIT_TEST #include "IRsend_test.h" #endif #include "IRtext.h" #include "IRutils.h" // Constants // Ref: // https://github.com/mharizanov/Daikin-AC-remote-control-over-the-Internet/tree/master/IRremote // http://rdlab.cdmt.vn/project-2013/daikin-ir-protocol // https://github.com/crankyoldgit/IRremoteESP8266/issues/582 using irutils::addBoolToString; using irutils::addDayToString; using irutils::addIntToString; using irutils::addLabeledString; using irutils::addModeToString; using irutils::addTempToString; using irutils::addFanToString; using irutils::bcdToUint8; using irutils::minsToString; using irutils::setBit; using irutils::setBits; using irutils::sumNibbles; using irutils::uint8ToBcd; #if SEND_DAIKIN // Send a Daikin A/C message. // // Args: // data: An array of kDaikinStateLength bytes containing the IR command. // // Status: STABLE // // Ref: // IRDaikinESP.cpp // https://github.com/mharizanov/Daikin-AC-remote-control-over-the-Internet/tree/master/IRremote // https://github.com/blafois/Daikin-IR-Reverse void IRsend::sendDaikin(const unsigned char data[], const uint16_t nbytes, const uint16_t repeat) { if (nbytes < kDaikinStateLengthShort) return; // Not enough bytes to send a proper message. for (uint16_t r = 0; r <= repeat; r++) { uint16_t offset = 0; // Send the header, 0b00000 sendGeneric(0, 0, // No header for the header kDaikinBitMark, kDaikinOneSpace, kDaikinBitMark, kDaikinZeroSpace, kDaikinBitMark, kDaikinZeroSpace + kDaikinGap, (uint64_t)0b00000, kDaikinHeaderLength, 38, false, 0, 50); // Data #1 if (nbytes < kDaikinStateLength) { // Are we using the legacy size? // Do this as a constant to save RAM and keep in flash memory sendGeneric(kDaikinHdrMark, kDaikinHdrSpace, kDaikinBitMark, kDaikinOneSpace, kDaikinBitMark, kDaikinZeroSpace, kDaikinBitMark, kDaikinZeroSpace + kDaikinGap, kDaikinFirstHeader64, 64, 38, false, 0, 50); } else { // We are using the newer/more correct size. sendGeneric(kDaikinHdrMark, kDaikinHdrSpace, kDaikinBitMark, kDaikinOneSpace, kDaikinBitMark, kDaikinZeroSpace, kDaikinBitMark, kDaikinZeroSpace + kDaikinGap, data, kDaikinSection1Length, 38, false, 0, 50); offset += kDaikinSection1Length; } // Data #2 sendGeneric(kDaikinHdrMark, kDaikinHdrSpace, kDaikinBitMark, kDaikinOneSpace, kDaikinBitMark, kDaikinZeroSpace, kDaikinBitMark, kDaikinZeroSpace + kDaikinGap, data + offset, kDaikinSection2Length, 38, false, 0, 50); offset += kDaikinSection2Length; // Data #3 sendGeneric(kDaikinHdrMark, kDaikinHdrSpace, kDaikinBitMark, kDaikinOneSpace, kDaikinBitMark, kDaikinZeroSpace, kDaikinBitMark, kDaikinZeroSpace + kDaikinGap, data + offset, nbytes - offset, 38, false, 0, 50); } } #endif // SEND_DAIKIN IRDaikinESP::IRDaikinESP(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { stateReset(); } void IRDaikinESP::begin(void) { _irsend.begin(); } #if SEND_DAIKIN void IRDaikinESP::send(const uint16_t repeat) { _irsend.sendDaikin(getRaw(), kDaikinStateLength, repeat); } #endif // SEND_DAIKIN // Verify the checksums are valid for a given state. // Args: // state: The array to verify the checksums of. // length: The size of the state. // Returns: // A boolean. bool IRDaikinESP::validChecksum(uint8_t state[], const uint16_t length) { // Data #1 if (length < kDaikinSection1Length || state[kDaikinByteChecksum1] != sumBytes(state, kDaikinSection1Length - 1)) return false; // Data #2 if (length < kDaikinSection1Length + kDaikinSection2Length || state[kDaikinByteChecksum2] != sumBytes(state + kDaikinSection1Length, kDaikinSection2Length - 1)) return false; // Data #3 if (length < kDaikinSection1Length + kDaikinSection2Length + 2 || state[length - 1] != sumBytes(state + kDaikinSection1Length + kDaikinSection2Length, length - (kDaikinSection1Length + kDaikinSection2Length) - 1)) return false; return true; } // Calculate and set the checksum values for the internal state. void IRDaikinESP::checksum(void) { remote[kDaikinByteChecksum1] = sumBytes(remote, kDaikinSection1Length - 1); remote[kDaikinByteChecksum2] = sumBytes(remote + kDaikinSection1Length, kDaikinSection2Length - 1); remote[kDaikinByteChecksum3] = sumBytes(remote + kDaikinSection1Length + kDaikinSection2Length, kDaikinSection3Length - 1); } void IRDaikinESP::stateReset(void) { for (uint8_t i = 0; i < kDaikinStateLength; i++) remote[i] = 0x0; remote[0] = 0x11; remote[1] = 0xDA; remote[2] = 0x27; remote[4] = 0xC5; // remote[7] is a checksum byte, it will be set by checksum(). remote[8] = 0x11; remote[9] = 0xDA; remote[10] = 0x27; remote[12] = 0x42; // remote[15] is a checksum byte, it will be set by checksum(). remote[16] = 0x11; remote[17] = 0xDA; remote[18] = 0x27; remote[21] = 0x49; remote[22] = 0x1E; remote[24] = 0xB0; remote[27] = 0x06; remote[28] = 0x60; remote[31] = 0xC0; // remote[34] is a checksum byte, it will be set by checksum(). this->checksum(); } uint8_t *IRDaikinESP::getRaw(void) { this->checksum(); // Ensure correct settings before sending. return remote; } void IRDaikinESP::setRaw(const uint8_t new_code[], const uint16_t length) { uint8_t offset = 0; if (length == kDaikinStateLengthShort) { // Handle the "short" length case. offset = kDaikinStateLength - kDaikinStateLengthShort; this->stateReset(); } for (uint8_t i = 0; i < length && i < kDaikinStateLength; i++) remote[i + offset] = new_code[i]; } void IRDaikinESP::on(void) { setPower(true); } void IRDaikinESP::off(void) { setPower(false); } void IRDaikinESP::setPower(const bool on) { setBit(&remote[kDaikinBytePower], kDaikinBitPowerOffset, on); } bool IRDaikinESP::getPower(void) { return GETBIT8(remote[kDaikinBytePower], kDaikinBitPowerOffset); } // Set the temp in deg C void IRDaikinESP::setTemp(const uint8_t temp) { uint8_t degrees = std::max(temp, kDaikinMinTemp); degrees = std::min(degrees, kDaikinMaxTemp); remote[kDaikinByteTemp] = degrees << 1; } uint8_t IRDaikinESP::getTemp(void) { return remote[kDaikinByteTemp] >> 1; } // Set the speed of the fan, 1-5 or kDaikinFanAuto or kDaikinFanQuiet void IRDaikinESP::setFan(const uint8_t fan) { // Set the fan speed bits, leave low 4 bits alone uint8_t fanset; if (fan == kDaikinFanQuiet || fan == kDaikinFanAuto) fanset = fan; else if (fan < kDaikinFanMin || fan > kDaikinFanMax) fanset = kDaikinFanAuto; else fanset = 2 + fan; setBits(&remote[kDaikinByteFan], kDaikinFanOffset, kDaikinFanSize, fanset); } uint8_t IRDaikinESP::getFan(void) { uint8_t fan = GETBITS8(remote[kDaikinByteFan], kDaikinFanOffset, kDaikinFanSize); if (fan != kDaikinFanQuiet && fan != kDaikinFanAuto) fan -= 2; return fan; } uint8_t IRDaikinESP::getMode(void) { return GETBITS8(remote[kDaikinBytePower], kDaikinModeOffset, kDaikinModeSize); } void IRDaikinESP::setMode(const uint8_t mode) { switch (mode) { case kDaikinAuto: case kDaikinCool: case kDaikinHeat: case kDaikinFan: case kDaikinDry: setBits(&remote[kDaikinBytePower], kDaikinModeOffset, kDaikinModeSize, mode); break; default: this->setMode(kDaikinAuto); } } void IRDaikinESP::setSwingVertical(const bool on) { setBits(&remote[kDaikinByteFan], kDaikinSwingOffset, kDaikinSwingSize, on ? kDaikinSwingOn : kDaikinSwingOff); } bool IRDaikinESP::getSwingVertical(void) { return GETBITS8(remote[kDaikinByteFan], kDaikinSwingOffset, kDaikinSwingSize); } void IRDaikinESP::setSwingHorizontal(const bool on) { setBits(&remote[kDaikinByteSwingH], kDaikinSwingOffset, kDaikinSwingSize, on ? kDaikinSwingOn : kDaikinSwingOff); } bool IRDaikinESP::getSwingHorizontal(void) { return GETBITS8(remote[kDaikinByteSwingH], kDaikinSwingOffset, kDaikinSwingSize); } void IRDaikinESP::setQuiet(const bool on) { setBit(&remote[kDaikinByteSilent], kDaikinBitSilentOffset, on); // Powerful & Quiet mode being on are mutually exclusive. if (on) this->setPowerful(false); } bool IRDaikinESP::getQuiet(void) { return GETBIT8(remote[kDaikinByteSilent], kDaikinBitSilentOffset); } void IRDaikinESP::setPowerful(const bool on) { setBit(&remote[kDaikinBytePowerful], kDaikinBitPowerfulOffset, on); if (on) { // Powerful, Quiet, & Econo mode being on are mutually exclusive. this->setQuiet(false); this->setEcono(false); } } bool IRDaikinESP::getPowerful(void) { return GETBIT8(remote[kDaikinBytePowerful], kDaikinBitPowerfulOffset); } void IRDaikinESP::setSensor(const bool on) { setBit(&remote[kDaikinByteSensor], kDaikinBitSensorOffset, on); } bool IRDaikinESP::getSensor(void) { return GETBIT8(remote[kDaikinByteSensor], kDaikinBitSensorOffset); } void IRDaikinESP::setEcono(const bool on) { setBit(&remote[kDaikinByteEcono], kDaikinBitEconoOffset, on); // Powerful & Econo mode being on are mutually exclusive. if (on) this->setPowerful(false); } bool IRDaikinESP::getEcono(void) { return GETBIT8(remote[kDaikinByteEcono], kDaikinBitEconoOffset); } void IRDaikinESP::setMold(const bool on) { setBit(&remote[kDaikinByteMold], kDaikinBitMoldOffset, on); } bool IRDaikinESP::getMold(void) { return GETBIT8(remote[kDaikinByteMold], kDaikinBitMoldOffset); } void IRDaikinESP::setComfort(const bool on) { setBit(&remote[kDaikinByteComfort], kDaikinBitComfortOffset, on); } bool IRDaikinESP::getComfort(void) { return GETBIT8(remote[kDaikinByteComfort], kDaikinBitComfortOffset); } // starttime: Number of minutes after midnight. void IRDaikinESP::enableOnTimer(const uint16_t starttime) { setBit(&remote[kDaikinByteOnTimer], kDaikinBitOnTimerOffset); remote[kDaikinByteOnTimerMinsLow] = starttime; // only keep 4 bits setBits(&remote[kDaikinByteOnTimerMinsHigh], kDaikinOnTimerMinsHighOffset, kDaikinOnTimerMinsHighSize, starttime >> 8); } void IRDaikinESP::disableOnTimer(void) { this->enableOnTimer(kDaikinUnusedTime); setBit(&remote[kDaikinByteOnTimer], kDaikinBitOnTimerOffset, false); } uint16_t IRDaikinESP::getOnTime(void) { return (GETBITS8(remote[kDaikinByteOnTimerMinsHigh], kDaikinOnTimerMinsHighOffset, kDaikinOnTimerMinsHighSize) << 8) + remote[kDaikinByteOnTimerMinsLow]; } bool IRDaikinESP::getOnTimerEnabled(void) { return GETBIT8(remote[kDaikinByteOnTimer], kDaikinBitOnTimerOffset); } // endtime: Number of minutes after midnight. void IRDaikinESP::enableOffTimer(const uint16_t endtime) { setBit(&remote[kDaikinByteOffTimer], kDaikinBitOffTimerOffset); remote[kDaikinByteOffTimerMinsHigh] = endtime >> kNibbleSize; setBits(&remote[kDaikinByteOffTimerMinsLow], kHighNibble, kNibbleSize, endtime); } void IRDaikinESP::disableOffTimer(void) { this->enableOffTimer(kDaikinUnusedTime); setBit(&remote[kDaikinByteOffTimer], kDaikinBitOffTimerOffset, false); } uint16_t IRDaikinESP::getOffTime(void) { return (remote[kDaikinByteOffTimerMinsHigh] << kNibbleSize) + GETBITS8(remote[kDaikinByteOffTimerMinsLow], kHighNibble, kNibbleSize); } bool IRDaikinESP::getOffTimerEnabled(void) { return GETBIT8(remote[kDaikinByteOffTimer], kDaikinBitOffTimerOffset); } void IRDaikinESP::setCurrentTime(const uint16_t mins_since_midnight) { uint16_t mins = mins_since_midnight; if (mins > 24 * 60) mins = 0; // If > 23:59, set to 00:00 remote[kDaikinByteClockMinsLow] = mins; // only keep 3 bits setBits(&remote[kDaikinByteClockMinsHigh], kDaikinClockMinsHighOffset, kDaikinClockMinsHighSize, mins >> 8); } uint16_t IRDaikinESP::getCurrentTime(void) { return (GETBITS8(remote[kDaikinByteClockMinsHigh], kDaikinClockMinsHighOffset, kDaikinClockMinsHighSize) << 8) + remote[kDaikinByteClockMinsLow]; } void IRDaikinESP::setCurrentDay(const uint8_t day_of_week) { // 1 is SUN, 2 is MON, ..., 7 is SAT setBits(&remote[kDaikinByteClockMinsHigh], kDaikinDoWOffset, kDaikinDoWSize, day_of_week); } uint8_t IRDaikinESP::getCurrentDay(void) { return GETBITS8(remote[kDaikinByteClockMinsHigh], kDaikinDoWOffset, kDaikinDoWSize); } void IRDaikinESP::setWeeklyTimerEnable(const bool on) { // Bit is cleared for `on`. setBit(&remote[kDaikinByteWeeklyTimer], kDaikinBitWeeklyTimerOffset, !on); } bool IRDaikinESP::getWeeklyTimerEnable(void) { return !GETBIT8(remote[kDaikinByteWeeklyTimer], kDaikinBitWeeklyTimerOffset); } // Convert a standard A/C mode into its native mode. uint8_t IRDaikinESP::convertMode(const stdAc::opmode_t mode) { switch (mode) { case stdAc::opmode_t::kCool: return kDaikinCool; case stdAc::opmode_t::kHeat: return kDaikinHeat; case stdAc::opmode_t::kDry: return kDaikinDry; case stdAc::opmode_t::kFan: return kDaikinFan; default: return kDaikinAuto; } } // Convert a standard A/C Fan speed into its native fan speed. uint8_t IRDaikinESP::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: return kDaikinFanQuiet; case stdAc::fanspeed_t::kLow: return kDaikinFanMin; case stdAc::fanspeed_t::kMedium: return kDaikinFanMed; case stdAc::fanspeed_t::kHigh: return kDaikinFanMax - 1; case stdAc::fanspeed_t::kMax: return kDaikinFanMax; default: return kDaikinFanAuto; } } // Convert a native mode to it's common equivalent. stdAc::opmode_t IRDaikinESP::toCommonMode(const uint8_t mode) { switch (mode) { case kDaikinCool: return stdAc::opmode_t::kCool; case kDaikinHeat: return stdAc::opmode_t::kHeat; case kDaikinDry: return stdAc::opmode_t::kDry; case kDaikinFan: return stdAc::opmode_t::kFan; default: return stdAc::opmode_t::kAuto; } } // Convert a native fan speed to it's common equivalent. stdAc::fanspeed_t IRDaikinESP::toCommonFanSpeed(const uint8_t speed) { switch (speed) { case kDaikinFanMax: return stdAc::fanspeed_t::kMax; case kDaikinFanMax - 1: return stdAc::fanspeed_t::kHigh; case kDaikinFanMed: case kDaikinFanMin + 1: return stdAc::fanspeed_t::kMedium; case kDaikinFanMin: return stdAc::fanspeed_t::kLow; case kDaikinFanQuiet: return stdAc::fanspeed_t::kMin; default: return stdAc::fanspeed_t::kAuto; } } // Convert the A/C state to it's common equivalent. stdAc::state_t IRDaikinESP::toCommon(void) { stdAc::state_t result; result.protocol = decode_type_t::DAIKIN; result.model = -1; // No models used. result.power = this->getPower(); result.mode = this->toCommonMode(this->getMode()); result.celsius = true; result.degrees = this->getTemp(); result.fanspeed = this->toCommonFanSpeed(this->getFan()); result.swingv = this->getSwingVertical() ? stdAc::swingv_t::kAuto : stdAc::swingv_t::kOff; result.swingh = this->getSwingHorizontal() ? stdAc::swingh_t::kAuto : stdAc::swingh_t::kOff; result.quiet = this->getQuiet(); result.turbo = this->getPowerful(); result.clean = this->getMold(); result.econo = this->getEcono(); // Not supported. result.filter = false; result.light = false; result.beep = false; result.sleep = -1; result.clock = -1; return result; } // Convert the internal state into a human readable string. String IRDaikinESP::toString(void) { String result = ""; result.reserve(230); // Reserve some heap for the string to reduce fragging. result += addBoolToString(getPower(), kPowerStr, false); result += addModeToString(getMode(), kDaikinAuto, kDaikinCool, kDaikinHeat, kDaikinDry, kDaikinFan); result += addTempToString(getTemp()); result += addFanToString(getFan(), kDaikinFanMax, kDaikinFanMin, kDaikinFanAuto, kDaikinFanQuiet, kDaikinFanMed); result += addBoolToString(getPowerful(), kPowerfulStr); result += addBoolToString(getQuiet(), kQuietStr); result += addBoolToString(getSensor(), kSensorStr); result += addBoolToString(getMold(), kMouldStr); result += addBoolToString(getComfort(), kComfortStr); result += addBoolToString(getSwingHorizontal(), kSwingHStr); result += addBoolToString(getSwingVertical(), kSwingVStr); result += addLabeledString(minsToString(this->getCurrentTime()), kClockStr); result += addDayToString(getCurrentDay(), -1); result += addLabeledString(getOnTimerEnabled() ? minsToString(this->getOnTime()) : kOffStr, kOnTimerStr); result += addLabeledString(getOffTimerEnabled() ? minsToString(this->getOffTime()) : kOffStr, kOffTimerStr); result += addBoolToString(getWeeklyTimerEnable(), kWeeklyTimerStr); return result; } #if DECODE_DAIKIN // Decode the supplied Daikin A/C message. // Args: // results: Ptr to the data to decode and where to store the decode result. // nbits: Nr. of bits to expect in the data portion. (kDaikinBits) // strict: Flag to indicate if we strictly adhere to the specification. // Returns: // boolean: True if it can decode it, false if it can't. // // Status: STABLE / Reported as working. // // Ref: // https://github.com/mharizanov/Daikin-AC-remote-control-over-the-Internet/tree/master/IRremote bool IRrecv::decodeDaikin(decode_results *results, const uint16_t nbits, const bool strict) { // Is there enough data to match successfully? if (results->rawlen < (2 * (nbits + kDaikinHeaderLength) + kDaikinSections * (kHeader + kFooter) + kFooter - 1)) return false; // Compliance if (strict && nbits != kDaikinBits) return false; uint16_t offset = kStartOffset; match_result_t data_result; // Header #1 - Doesn't count as data. data_result = matchData(&(results->rawbuf[offset]), kDaikinHeaderLength, kDaikinBitMark, kDaikinOneSpace, kDaikinBitMark, kDaikinZeroSpace, kDaikinTolerance, kDaikinMarkExcess, false); offset += data_result.used; if (data_result.success == false) return false; // Fail if (data_result.data) return false; // The header bits should be zero. // Footer if (!matchMark(results->rawbuf[offset++], kDaikinBitMark, kDaikinTolerance, kDaikinMarkExcess)) return false; if (!matchSpace(results->rawbuf[offset++], kDaikinZeroSpace + kDaikinGap, kDaikinTolerance, kDaikinMarkExcess)) return false; // Sections const uint8_t ksectionSize[kDaikinSections] = { kDaikinSection1Length, kDaikinSection2Length, kDaikinSection3Length}; uint16_t pos = 0; for (uint8_t section = 0; section < kDaikinSections; section++) { uint16_t used; // Section Header + Section Data (7 bytes) + Section Footer used = matchGeneric(results->rawbuf + offset, results->state + pos, results->rawlen - offset, ksectionSize[section] * 8, kDaikinHdrMark, kDaikinHdrSpace, kDaikinBitMark, kDaikinOneSpace, kDaikinBitMark, kDaikinZeroSpace, kDaikinBitMark, kDaikinZeroSpace + kDaikinGap, section >= kDaikinSections - 1, kDaikinTolerance, kDaikinMarkExcess, false); if (used == 0) return false; offset += used; pos += ksectionSize[section]; } // Compliance if (strict) { // Re-check we got the correct size/length due to the way we read the data. if (pos * 8 != kDaikinBits) return false; // Validate the checksum. if (!IRDaikinESP::validChecksum(results->state)) return false; } // Success results->decode_type = DAIKIN; results->bits = nbits; // No need to record the state as we stored it as we decoded it. // As we use result->state, we don't record value, address, or command as it // is a union data type. return true; } #endif // DECODE_DAIKIN #if SEND_DAIKIN2 // Send a Daikin2 A/C message. // // Args: // data: An array of kDaikin2StateLength bytes containing the IR command. // // Status: BETA/Appears to work. // // Ref: // https://github.com/crankyoldgit/IRremoteESP8266/issues/582 void IRsend::sendDaikin2(const unsigned char data[], const uint16_t nbytes, const uint16_t repeat) { if (nbytes < kDaikin2Section1Length) return; // Not enough bytes to send a partial message. for (uint16_t r = 0; r <= repeat; r++) { // Leader sendGeneric(kDaikin2LeaderMark, kDaikin2LeaderSpace, 0, 0, 0, 0, 0, 0, (uint64_t) 0, // No data payload. 0, kDaikin2Freq, false, 0, 50); // Section #1 sendGeneric(kDaikin2HdrMark, kDaikin2HdrSpace, kDaikin2BitMark, kDaikin2OneSpace, kDaikin2BitMark, kDaikin2ZeroSpace, kDaikin2BitMark, kDaikin2Gap, data, kDaikin2Section1Length, kDaikin2Freq, false, 0, 50); // Section #2 sendGeneric(kDaikin2HdrMark, kDaikin2HdrSpace, kDaikin2BitMark, kDaikin2OneSpace, kDaikin2BitMark, kDaikin2ZeroSpace, kDaikin2BitMark, kDaikin2Gap, data + kDaikin2Section1Length, nbytes - kDaikin2Section1Length, kDaikin2Freq, false, 0, 50); } } #endif // SEND_DAIKIN2 // Class for handling Daikin2 A/C messages. // // Code by crankyoldgit, Reverse engineering analysis by sheppy99 // // Supported Remotes: Daikin ARC477A1 remote // // Ref: // https://github.com/crankyoldgit/IRremoteESP8266/issues/582 // https://docs.google.com/spreadsheets/d/1f8EGfIbBUo2B-CzUFdrgKQprWakoYNKM80IKZN4KXQE/edit?usp=sharing // https://www.daikin.co.nz/sites/default/files/daikin-split-system-US7-FTXZ25-50NV1B.pdf IRDaikin2::IRDaikin2(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { stateReset(); } void IRDaikin2::begin(void) { _irsend.begin(); } #if SEND_DAIKIN2 void IRDaikin2::send(const uint16_t repeat) { _irsend.sendDaikin2(getRaw(), kDaikin2StateLength, repeat); } #endif // SEND_DAIKIN2 // Verify the checksum is valid for a given state. // Args: // state: The array to verify the checksum of. // length: The size of the state. // Returns: // A boolean. bool IRDaikin2::validChecksum(uint8_t state[], const uint16_t length) { // Validate the checksum of section #1. if (length <= kDaikin2Section1Length - 1 || state[kDaikin2Section1Length - 1] != sumBytes(state, kDaikin2Section1Length - 1)) return false; // Validate the checksum of section #2 (a.k.a. the rest) if (length <= kDaikin2Section1Length + 1 || state[length - 1] != sumBytes(state + kDaikin2Section1Length, length - kDaikin2Section1Length - 1)) return false; return true; } // Calculate and set the checksum values for the internal state. void IRDaikin2::checksum(void) { remote_state[kDaikin2Section1Length - 1] = sumBytes( remote_state, kDaikin2Section1Length - 1); remote_state[kDaikin2StateLength -1 ] = sumBytes( remote_state + kDaikin2Section1Length, kDaikin2Section2Length - 1); } void IRDaikin2::stateReset(void) { for (uint8_t i = 0; i < kDaikin2StateLength; i++) remote_state[i] = 0x0; remote_state[0] = 0x11; remote_state[1] = 0xDA; remote_state[2] = 0x27; remote_state[4] = 0x01; remote_state[6] = 0xC0; remote_state[7] = 0x70; remote_state[8] = 0x08; remote_state[9] = 0x0C; remote_state[10] = 0x80; remote_state[11] = 0x04; remote_state[12] = 0xB0; remote_state[13] = 0x16; remote_state[14] = 0x24; remote_state[17] = 0xBE; remote_state[18] = 0xD0; // remote_state[19] is a checksum byte, it will be set by checksum(). remote_state[20] = 0x11; remote_state[21] = 0xDA; remote_state[22] = 0x27; remote_state[25] = 0x08; remote_state[28] = 0xA0; remote_state[35] = 0xC1; remote_state[36] = 0x80; remote_state[37] = 0x60; // remote_state[38] is a checksum byte, it will be set by checksum(). disableOnTimer(); disableOffTimer(); disableSleepTimer(); checksum(); } uint8_t *IRDaikin2::getRaw(void) { checksum(); // Ensure correct settings before sending. return remote_state; } void IRDaikin2::setRaw(const uint8_t new_code[]) { memcpy(remote_state, new_code, kDaikin2StateLength); } void IRDaikin2::on(void) { setPower(true); } void IRDaikin2::off(void) { setPower(false); } void IRDaikin2::setPower(const bool on) { setBit(&remote_state[25], kDaikinBitPowerOffset, on); setBit(&remote_state[6], kDaikin2BitPowerOffset, !on); } bool IRDaikin2::getPower(void) { return GETBIT8(remote_state[25], kDaikinBitPowerOffset) && !GETBIT8(remote_state[6], kDaikin2BitPowerOffset); } uint8_t IRDaikin2::getMode(void) { return GETBITS8(remote_state[25], kHighNibble, kModeBitsSize); } void IRDaikin2::setMode(const uint8_t desired_mode) { uint8_t mode = desired_mode; switch (mode) { case kDaikinCool: case kDaikinHeat: case kDaikinFan: case kDaikinDry: break; default: mode = kDaikinAuto; } setBits(&remote_state[25], kHighNibble, kModeBitsSize, mode); // Redo the temp setting as Cool mode has a different min temp. if (mode == kDaikinCool) this->setTemp(this->getTemp()); } // Set the temp in deg C void IRDaikin2::setTemp(const uint8_t desired) { // The A/C has a different min temp if in cool mode. uint8_t temp = std::max( (this->getMode() == kDaikinCool) ? kDaikin2MinCoolTemp : kDaikinMinTemp, desired); remote_state[26] = std::min(kDaikinMaxTemp, temp) << 1; } // Set the speed of the fan, 1-5 or kDaikinFanAuto or kDaikinFanQuiet void IRDaikin2::setFan(const uint8_t fan) { // Set the fan speed bits, leave low 4 bits alone uint8_t fanset; if (fan == kDaikinFanQuiet || fan == kDaikinFanAuto) fanset = fan; else if (fan < kDaikinFanMin || fan > kDaikinFanMax) fanset = kDaikinFanAuto; else fanset = 2 + fan; setBits(&remote_state[kDaikin2FanByte], kHighNibble, kNibbleSize, fanset); } uint8_t IRDaikin2::getFan(void) { const uint8_t fan = GETBITS8(remote_state[kDaikin2FanByte], kHighNibble, kNibbleSize); switch (fan) { case kDaikinFanAuto: case kDaikinFanQuiet: return fan; default: return fan - 2; } } uint8_t IRDaikin2::getTemp(void) { return remote_state[26] >> 1; } void IRDaikin2::setSwingVertical(const uint8_t position) { switch (position) { case kDaikin2SwingVHigh: case 2: case 3: case 4: case 5: case kDaikin2SwingVLow: case kDaikin2SwingVSwing: case kDaikin2SwingVBreeze: case kDaikin2SwingVCirculate: case kDaikin2SwingVAuto: setBits(&remote_state[18], kLowNibble, kNibbleSize, position); } } uint8_t IRDaikin2::getSwingVertical(void) { return GETBITS8(remote_state[18], kLowNibble, kNibbleSize); } // Convert a standard A/C vertical swing into its native version. uint8_t IRDaikin2::convertSwingV(const stdAc::swingv_t position) { switch (position) { case stdAc::swingv_t::kHighest: case stdAc::swingv_t::kHigh: case stdAc::swingv_t::kMiddle: case stdAc::swingv_t::kLow: case stdAc::swingv_t::kLowest: return (uint8_t)position + kDaikin2SwingVHigh; case stdAc::swingv_t::kAuto: return kDaikin2SwingVSwing; default: return kDaikin2SwingVAuto; } } // Convert a native vertical swing to it's common equivalent. stdAc::swingv_t IRDaikin2::toCommonSwingV(const uint8_t setting) { switch (setting) { case kDaikin2SwingVHigh: return stdAc::swingv_t::kHighest; case kDaikin2SwingVHigh + 1: return stdAc::swingv_t::kHigh; case kDaikin2SwingVHigh + 2: case kDaikin2SwingVHigh + 3: return stdAc::swingv_t::kMiddle; case kDaikin2SwingVLow - 1: return stdAc::swingv_t::kLow; case kDaikin2SwingVLow: return stdAc::swingv_t::kLowest; case kDaikin2SwingVAuto: return stdAc::swingv_t::kOff; default: return stdAc::swingv_t::kAuto; } } void IRDaikin2::setSwingHorizontal(const uint8_t position) { remote_state[17] = position; } uint8_t IRDaikin2::getSwingHorizontal(void) { return remote_state[17]; } void IRDaikin2::setCurrentTime(const uint16_t numMins) { uint16_t mins = numMins; if (numMins > 24 * 60) mins = 0; // If > 23:59, set to 00:00 remote_state[5] = mins; setBits(&remote_state[6], kLowNibble, kNibbleSize, mins >> 8); } uint16_t IRDaikin2::getCurrentTime(void) { return (GETBITS8(remote_state[6], kLowNibble, kNibbleSize) << 8) | remote_state[5]; } // starttime: Number of minutes after midnight. // Note: Timer location is shared with sleep timer. void IRDaikin2::enableOnTimer(const uint16_t starttime) { clearSleepTimerFlag(); setBit(&remote_state[25], kDaikinBitOnTimerOffset); // Set the On Timer flag. remote_state[30] = starttime; setBits(&remote_state[31], kLowNibble, kNibbleSize, starttime >> 8); } void IRDaikin2::clearOnTimerFlag(void) { setBit(&remote_state[25], kDaikinBitOnTimerOffset, false); } void IRDaikin2::disableOnTimer(void) { enableOnTimer(kDaikinUnusedTime); clearOnTimerFlag(); clearSleepTimerFlag(); } uint16_t IRDaikin2::getOnTime(void) { return (GETBITS8(remote_state[31], kLowNibble, kNibbleSize) << 8) + remote_state[30]; } bool IRDaikin2::getOnTimerEnabled(void) { return GETBIT8(remote_state[25], kDaikinBitOnTimerOffset); } // endtime: Number of minutes after midnight. void IRDaikin2::enableOffTimer(const uint16_t endtime) { // Set the Off Timer flag. setBit(&remote_state[25], kDaikinBitOffTimerOffset); remote_state[32] = endtime >> 4; setBits(&remote_state[31], kHighNibble, kNibbleSize, endtime); } void IRDaikin2::disableOffTimer(void) { enableOffTimer(kDaikinUnusedTime); // Clear the Off Timer flag. setBit(&remote_state[25], kDaikinBitOffTimerOffset, false); } uint16_t IRDaikin2::getOffTime(void) { return (remote_state[32] << 4) + GETBITS8(remote_state[31], kHighNibble, kNibbleSize); } bool IRDaikin2::getOffTimerEnabled(void) { return GETBIT8(remote_state[25], kDaikinBitOffTimerOffset); } uint8_t IRDaikin2::getBeep(void) { return GETBITS8(remote_state[7], kDaikin2BeepOffset, kDaikin2BeepSize); } void IRDaikin2::setBeep(const uint8_t beep) { setBits(&remote_state[7], kDaikin2BeepOffset, kDaikin2BeepSize, beep); } uint8_t IRDaikin2::getLight(void) { return GETBITS8(remote_state[7], kDaikin2LightOffset, kDaikin2LightSize); } void IRDaikin2::setLight(const uint8_t light) { setBits(&remote_state[7], kDaikin2LightOffset, kDaikin2LightSize, light); } void IRDaikin2::setMold(const bool on) { setBit(&remote_state[8], kDaikin2BitMoldOffset, on); } bool IRDaikin2::getMold(void) { return GETBIT8(remote_state[8], kDaikin2BitMoldOffset); } // Auto clean setting. void IRDaikin2::setClean(const bool on) { setBit(&remote_state[8], kDaikin2BitCleanOffset, on); } bool IRDaikin2::getClean(void) { return GETBIT8(remote_state[8], kDaikin2BitCleanOffset); } // Fresh Air settings. void IRDaikin2::setFreshAir(const bool on) { setBit(&remote_state[8], kDaikin2BitFreshAirOffset, on); } bool IRDaikin2::getFreshAir(void) { return GETBIT8(remote_state[8], kDaikin2BitFreshAirOffset); } void IRDaikin2::setFreshAirHigh(const bool on) { setBit(&remote_state[8], kDaikin2BitFreshAirHighOffset, on); } bool IRDaikin2::getFreshAirHigh(void) { return GETBIT8(remote_state[8], kDaikin2BitFreshAirHighOffset); } void IRDaikin2::setEyeAuto(bool on) { setBit(&remote_state[13], kDaikin2BitEyeAutoOffset, on); } bool IRDaikin2::getEyeAuto(void) { return GETBIT8(remote_state[13], kDaikin2BitEyeAutoOffset); } void IRDaikin2::setEye(bool on) { setBit(&remote_state[36], kDaikin2BitEyeOffset, on); } bool IRDaikin2::getEye(void) { return GETBIT8(remote_state[36], kDaikin2BitEyeOffset); } void IRDaikin2::setEcono(bool on) { setBit(&remote_state[36], kDaikinBitEconoOffset, on); } bool IRDaikin2::getEcono(void) { return GETBIT8(remote_state[36], kDaikinBitEconoOffset); } // sleeptime: Number of minutes. // Note: Timer location is shared with On Timer. void IRDaikin2::enableSleepTimer(const uint16_t sleeptime) { enableOnTimer(sleeptime); clearOnTimerFlag(); // Set the Sleep Timer flag. setBit(&remote_state[36], kDaikin2BitSleepTimerOffset); } void IRDaikin2::clearSleepTimerFlag(void) { setBit(&remote_state[36], kDaikin2BitSleepTimerOffset, false); } void IRDaikin2::disableSleepTimer(void) { disableOnTimer(); } uint16_t IRDaikin2::getSleepTime(void) { return getOnTime(); } bool IRDaikin2::getSleepTimerEnabled(void) { return GETBIT8(remote_state[36], kDaikin2BitSleepTimerOffset); } void IRDaikin2::setQuiet(const bool on) { setBit(&remote_state[33], kDaikinBitSilentOffset, on); // Powerful & Quiet mode being on are mutually exclusive. if (on) setPowerful(false); } bool IRDaikin2::getQuiet(void) { return GETBIT8(remote_state[33], kDaikinBitSilentOffset); } void IRDaikin2::setPowerful(const bool on) { setBit(&remote_state[33], kDaikinBitPowerfulOffset, on); // Powerful & Quiet mode being on are mutually exclusive. if (on) setQuiet(false); } bool IRDaikin2::getPowerful(void) { return GETBIT8(remote_state[33], kDaikinBitPowerfulOffset); } void IRDaikin2::setPurify(const bool on) { setBit(&remote_state[36], kDaikin2BitPurifyOffset, on); } bool IRDaikin2::getPurify(void) { return GETBIT8(remote_state[36], kDaikin2BitPurifyOffset); } // Convert a standard A/C mode into its native mode. uint8_t IRDaikin2::convertMode(const stdAc::opmode_t mode) { return IRDaikinESP::convertMode(mode); } // Convert a standard A/C Fan speed into its native fan speed. uint8_t IRDaikin2::convertFan(const stdAc::fanspeed_t speed) { return IRDaikinESP::convertFan(speed); } // Convert a standard A/C horizontal swing into its native version. uint8_t IRDaikin2::convertSwingH(const stdAc::swingh_t position) { switch (position) { case stdAc::swingh_t::kAuto: return kDaikin2SwingHSwing; case stdAc::swingh_t::kLeftMax: return kDaikin2SwingHLeftMax; case stdAc::swingh_t::kLeft: return kDaikin2SwingHLeft; case stdAc::swingh_t::kMiddle: return kDaikin2SwingHMiddle; case stdAc::swingh_t::kRight: return kDaikin2SwingHRight; case stdAc::swingh_t::kRightMax: return kDaikin2SwingHRightMax; case stdAc::swingh_t::kWide: return kDaikin2SwingHWide; default: return kDaikin2SwingHAuto; } } // Convert a native horizontal swing to it's common equivalent. stdAc::swingh_t IRDaikin2::toCommonSwingH(const uint8_t setting) { switch (setting) { case kDaikin2SwingHSwing: return stdAc::swingh_t::kAuto; case kDaikin2SwingHLeftMax: return stdAc::swingh_t::kLeftMax; case kDaikin2SwingHLeft: return stdAc::swingh_t::kLeft; case kDaikin2SwingHMiddle: return stdAc::swingh_t::kMiddle; case kDaikin2SwingHRight: return stdAc::swingh_t::kRight; case kDaikin2SwingHRightMax: return stdAc::swingh_t::kRightMax; case kDaikin2SwingHWide: return stdAc::swingh_t::kWide; default: return stdAc::swingh_t::kOff; } } // Convert the A/C state to it's common equivalent. stdAc::state_t IRDaikin2::toCommon(void) { stdAc::state_t result; result.protocol = decode_type_t::DAIKIN2; result.model = -1; // No models used. result.power = this->getPower(); result.mode = IRDaikinESP::toCommonMode(this->getMode()); result.celsius = true; result.degrees = this->getTemp(); result.fanspeed = IRDaikinESP::toCommonFanSpeed(this->getFan()); result.swingv = this->toCommonSwingV(this->getSwingVertical()); result.swingh = this->toCommonSwingH(this->getSwingHorizontal()); result.quiet = this->getQuiet(); result.light = this->getLight() != 3; // 3 is Off, everything else is On. result.turbo = this->getPowerful(); result.clean = this->getMold(); result.econo = this->getEcono(); result.filter = this->getPurify(); result.beep = this->getBeep() != 3; // 3 is Off, everything else is On. result.sleep = this->getSleepTimerEnabled() ? this->getSleepTime() : -1; // Not supported. result.clock = -1; return result; } // Convert the internal state into a human readable string. String IRDaikin2::toString(void) { String result = ""; result.reserve(310); // Reserve some heap for the string to reduce fragging. result += addBoolToString(getPower(), kPowerStr, false); result += addModeToString(getMode(), kDaikinAuto, kDaikinCool, kDaikinHeat, kDaikinDry, kDaikinFan); result += addTempToString(getTemp()); result += addFanToString(getFan(), kDaikinFanMax, kDaikinFanMin, kDaikinFanAuto, kDaikinFanQuiet, kDaikinFanMed); result += addIntToString(getSwingVertical(), kSwingVStr); result += kSpaceLBraceStr; switch (getSwingVertical()) { case kDaikin2SwingVHigh: result += kHighestStr; break; case 2: result += kHighStr; break; case 3: result += kUpperStr + kMiddleStr; break; case 4: result += kLowerStr + kMiddleStr; break; case 5: result += kLowStr; break; break; case kDaikin2SwingVLow: result += kLowestStr; break; case kDaikin2SwingVBreeze: result += kBreezeStr; break; case kDaikin2SwingVCirculate: result += kCirculateStr; break; case kDaikin2SwingVAuto: result += kAutoStr; break; case kDaikin2SwingVSwing: result += kSwingStr; break; default: result += kUnknownStr; } result += ')'; result += addIntToString(getSwingHorizontal(), kSwingHStr); result += kSpaceLBraceStr; switch (getSwingHorizontal()) { case kDaikin2SwingHAuto: result += kAutoStr; break; case kDaikin2SwingHSwing: result += kSwingStr; break; default: result += kUnknownStr; } result += ')'; result += addLabeledString(minsToString(getCurrentTime()), kClockStr); result += addLabeledString( getOnTimerEnabled() ? minsToString(getOnTime()) : kOffStr, kOnTimerStr); result += addLabeledString( getOffTimerEnabled() ? minsToString(getOffTime()) : kOffStr, kOffTimerStr); result += addLabeledString( getSleepTimerEnabled() ? minsToString(getSleepTime()) : kOffStr, kSleepStr + ' ' + kTimerStr); result += addIntToString(getBeep(), kBeepStr); result += kSpaceLBraceStr; switch (getBeep()) { case kDaikinBeepLoud: result += kLoudStr; break; case kDaikinBeepQuiet: result += kQuietStr; break; case kDaikinBeepOff: result += kOffStr; break; default: result += kUnknownStr; } result += ')'; result += addIntToString(getLight(), kLightStr); result += kSpaceLBraceStr; switch (getLight()) { case kDaikinLightBright: result += kHighStr; break; case kDaikinLightDim: result += kLowStr; break; case kDaikinLightOff: result += kOffStr; break; default: result += kUnknownStr; } result += ')'; result += addBoolToString(getMold(), kMouldStr); result += addBoolToString(getClean(), kCleanStr); result += addLabeledString( getFreshAir() ? (getFreshAirHigh() ? kHighStr : kOnStr) : kOffStr, kFreshStr); result += addBoolToString(getEye(), kEyeStr); result += addBoolToString(getEyeAuto(), kEyeStr + ' ' + kAutoStr); result += addBoolToString(getQuiet(), kQuietStr); result += addBoolToString(getPowerful(), kPowerfulStr); result += addBoolToString(getPurify(), kPurifyStr); result += addBoolToString(getEcono(), kEconoStr); return result; } #if DECODE_DAIKIN2 // Decode the supplied Daikin2 A/C message. // Args: // results: Ptr to the data to decode and where to store the decode result. // nbits: Nr. of bits to expect in the data portion. (kDaikin2Bits) // strict: Flag to indicate if we strictly adhere to the specification. // Returns: // boolean: True if it can decode it, false if it can't. // // Supported devices: // - Daikin FTXZ25NV1B, FTXZ35NV1B, FTXZ50NV1B Aircon // - Daikin ARC477A1 remote // // Status: BETA / Work as expected. // // Ref: // https://github.com/mharizanov/Daikin-AC-remote-control-over-the-Internet/tree/master/IRremote bool IRrecv::decodeDaikin2(decode_results *results, uint16_t nbits, bool strict) { if (results->rawlen < 2 * (nbits + kHeader + kFooter) + kHeader - 1) return false; // Compliance if (strict && nbits != kDaikin2Bits) return false; uint16_t offset = kStartOffset; const uint8_t ksectionSize[kDaikin2Sections] = {kDaikin2Section1Length, kDaikin2Section2Length}; // Leader if (!matchMark(results->rawbuf[offset++], kDaikin2LeaderMark, _tolerance + kDaikin2Tolerance)) return false; if (!matchSpace(results->rawbuf[offset++], kDaikin2LeaderSpace, _tolerance + kDaikin2Tolerance)) return false; // Sections uint16_t pos = 0; for (uint8_t section = 0; section < kDaikin2Sections; section++) { uint16_t used; // Section Header + Section Data + Section Footer used = matchGeneric(results->rawbuf + offset, results->state + pos, results->rawlen - offset, ksectionSize[section] * 8, kDaikin2HdrMark, kDaikin2HdrSpace, kDaikin2BitMark, kDaikin2OneSpace, kDaikin2BitMark, kDaikin2ZeroSpace, kDaikin2BitMark, kDaikin2Gap, section >= kDaikin2Sections - 1, _tolerance + kDaikin2Tolerance, kDaikinMarkExcess, false); if (used == 0) return false; offset += used; pos += ksectionSize[section]; } // Compliance if (strict) { // Re-check we got the correct size/length due to the way we read the data. if (pos * 8 != kDaikin2Bits) return false; // Validate the checksum. if (!IRDaikin2::validChecksum(results->state)) return false; } // Success results->decode_type = DAIKIN2; results->bits = nbits; // No need to record the state as we stored it as we decoded it. // As we use result->state, we don't record value, address, or command as it // is a union data type. return true; } #endif // DECODE_DAIKIN2 #if SEND_DAIKIN216 // Send a Daikin 216 bit A/C message. // // Args: // data: An array of kDaikin216StateLength bytes containing the IR command. // // Status: Alpha/Untested on a real device. // // Supported devices: // - Daikin ARC433B69 remote. // // Ref: // https://github.com/crankyoldgit/IRremoteESP8266/issues/689 // https://github.com/danny-source/Arduino_DY_IRDaikin void IRsend::sendDaikin216(const unsigned char data[], const uint16_t nbytes, const uint16_t repeat) { if (nbytes < kDaikin216Section1Length) return; // Not enough bytes to send a partial message. for (uint16_t r = 0; r <= repeat; r++) { // Section #1 sendGeneric(kDaikin216HdrMark, kDaikin216HdrSpace, kDaikin216BitMark, kDaikin216OneSpace, kDaikin216BitMark, kDaikin216ZeroSpace, kDaikin216BitMark, kDaikin216Gap, data, kDaikin216Section1Length, kDaikin216Freq, false, 0, kDutyDefault); // Section #2 sendGeneric(kDaikin216HdrMark, kDaikin216HdrSpace, kDaikin216BitMark, kDaikin216OneSpace, kDaikin216BitMark, kDaikin216ZeroSpace, kDaikin216BitMark, kDaikin216Gap, data + kDaikin216Section1Length, nbytes - kDaikin216Section1Length, kDaikin216Freq, false, 0, kDutyDefault); } } #endif // SEND_DAIKIN216 // Class for handling Daikin 216 bit / 27 byte A/C messages. // // Code by crankyoldgit. // // Supported Remotes: Daikin ARC433B69 remote // // Ref: // https://github.com/crankyoldgit/IRremoteESP8266/issues/689 // https://github.com/danny-source/Arduino_DY_IRDaikin IRDaikin216::IRDaikin216(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { stateReset(); } void IRDaikin216::begin(void) { _irsend.begin(); } #if SEND_DAIKIN216 void IRDaikin216::send(const uint16_t repeat) { _irsend.sendDaikin216(getRaw(), kDaikin216StateLength, repeat); } #endif // SEND_DAIKIN216 // Verify the checksum is valid for a given state. // Args: // state: The array to verify the checksum of. // length: The size of the state. // Returns: // A boolean. bool IRDaikin216::validChecksum(uint8_t state[], const uint16_t length) { // Validate the checksum of section #1. if (length <= kDaikin216Section1Length - 1 || state[kDaikin216Section1Length - 1] != sumBytes( state, kDaikin216Section1Length - 1)) return false; // Validate the checksum of section #2 (a.k.a. the rest) if (length <= kDaikin216Section1Length + 1 || state[length - 1] != sumBytes(state + kDaikin216Section1Length, length - kDaikin216Section1Length - 1)) return false; return true; } // Calculate and set the checksum values for the internal state. void IRDaikin216::checksum(void) { remote_state[kDaikin216Section1Length - 1] = sumBytes( remote_state, kDaikin216Section1Length - 1); remote_state[kDaikin216StateLength - 1] = sumBytes( remote_state + kDaikin216Section1Length, kDaikin216Section2Length - 1); } void IRDaikin216::stateReset(void) { for (uint8_t i = 0; i < kDaikin216StateLength; i++) remote_state[i] = 0x00; remote_state[0] = 0x11; remote_state[1] = 0xDA; remote_state[2] = 0x27; remote_state[3] = 0xF0; // remote_state[7] is a checksum byte, it will be set by checksum(). remote_state[8] = 0x11; remote_state[9] = 0xDA; remote_state[10] = 0x27; remote_state[23] = 0xC0; // remote_state[26] is a checksum byte, it will be set by checksum(). } uint8_t *IRDaikin216::getRaw(void) { checksum(); // Ensure correct settings before sending. return remote_state; } void IRDaikin216::setRaw(const uint8_t new_code[]) { memcpy(remote_state, new_code, kDaikin216StateLength); } void IRDaikin216::on(void) { setPower(true); } void IRDaikin216::off(void) { setPower(false); } void IRDaikin216::setPower(const bool on) { setBit(&remote_state[kDaikin216BytePower], kDaikinBitPowerOffset, on); } bool IRDaikin216::getPower(void) { return GETBIT8(remote_state[kDaikin216BytePower], kDaikinBitPowerOffset); } uint8_t IRDaikin216::getMode(void) { return GETBITS8(remote_state[kDaikin216ByteMode], kHighNibble, kModeBitsSize); } void IRDaikin216::setMode(const uint8_t mode) { switch (mode) { case kDaikinAuto: case kDaikinCool: case kDaikinHeat: case kDaikinFan: case kDaikinDry: setBits(&remote_state[kDaikin216ByteMode], kHighNibble, kModeBitsSize, mode); break; default: this->setMode(kDaikinAuto); } } // Convert a standard A/C mode into its native mode. uint8_t IRDaikin216::convertMode(const stdAc::opmode_t mode) { return IRDaikinESP::convertMode(mode); } // Set the temp in deg C void IRDaikin216::setTemp(const uint8_t temp) { uint8_t degrees = std::max(temp, kDaikinMinTemp); degrees = std::min(degrees, kDaikinMaxTemp); setBits(&remote_state[kDaikin216ByteTemp], kDaikin216TempOffset, kDaikin216TempSize, degrees); } uint8_t IRDaikin216::getTemp(void) { return GETBITS8(remote_state[kDaikin216ByteTemp], kDaikin216TempOffset, kDaikin216TempSize); } // Set the speed of the fan, 1-5 or kDaikinFanAuto or kDaikinFanQuiet void IRDaikin216::setFan(const uint8_t fan) { // Set the fan speed bits, leave low 4 bits alone uint8_t fanset; if (fan == kDaikinFanQuiet || fan == kDaikinFanAuto) fanset = fan; else if (fan < kDaikinFanMin || fan > kDaikinFanMax) fanset = kDaikinFanAuto; else fanset = 2 + fan; setBits(&remote_state[kDaikin216ByteFan], kHighNibble, kDaikinFanSize, fanset); } uint8_t IRDaikin216::getFan(void) { uint8_t fan = GETBITS8(remote_state[kDaikin216ByteFan], kHighNibble, kDaikinFanSize); if (fan != kDaikinFanQuiet && fan != kDaikinFanAuto) fan -= 2; return fan; } // Convert a standard A/C Fan speed into its native fan speed. uint8_t IRDaikin216::convertFan(const stdAc::fanspeed_t speed) { return IRDaikinESP::convertFan(speed); } void IRDaikin216::setSwingVertical(const bool on) { setBits(&remote_state[kDaikin216ByteSwingV], kLowNibble, kDaikin216SwingSize, on ? kDaikin216SwingOn : kDaikin216SwingOff); } bool IRDaikin216::getSwingVertical(void) { return GETBITS8(remote_state[kDaikin216ByteSwingV], kLowNibble, kDaikin216SwingSize); } void IRDaikin216::setSwingHorizontal(const bool on) { setBits(&remote_state[kDaikin216ByteSwingH], kLowNibble, kDaikin216SwingSize, on ? kDaikin216SwingOn : kDaikin216SwingOff); } bool IRDaikin216::getSwingHorizontal(void) { return GETBITS8(remote_state[kDaikin216ByteSwingH], kLowNibble, kDaikin216SwingSize); } // This is a horrible hack till someone works out the quiet mode bit. void IRDaikin216::setQuiet(const bool on) { if (on) { this->setFan(kDaikinFanQuiet); // Powerful & Quiet mode being on are mutually exclusive. this->setPowerful(false); } else if (this->getFan() == kDaikinFanQuiet) { this->setFan(kDaikinFanAuto); } } // This is a horrible hack till someone works out the quiet mode bit. bool IRDaikin216::getQuiet(void) { return this->getFan() == kDaikinFanQuiet; } void IRDaikin216::setPowerful(const bool on) { setBit(&remote_state[kDaikin216BytePowerful], kDaikinBitPowerfulOffset, on); // Powerful & Quiet mode being on are mutually exclusive. if (on) this->setQuiet(false); } bool IRDaikin216::getPowerful(void) { return GETBIT8(remote_state[kDaikin216BytePowerful], kDaikinBitPowerfulOffset); } // Convert the A/C state to it's common equivalent. stdAc::state_t IRDaikin216::toCommon(void) { stdAc::state_t result; result.protocol = decode_type_t::DAIKIN216; result.model = -1; // No models used. result.power = this->getPower(); result.mode = IRDaikinESP::toCommonMode(this->getMode()); result.celsius = true; result.degrees = this->getTemp(); result.fanspeed = IRDaikinESP::toCommonFanSpeed(this->getFan()); result.swingv = this->getSwingVertical() ? stdAc::swingv_t::kAuto : stdAc::swingv_t::kOff; result.swingh = this->getSwingHorizontal() ? stdAc::swingh_t::kAuto : stdAc::swingh_t::kOff; result.quiet = this->getQuiet(); result.turbo = this->getPowerful(); // Not supported. result.light = false; result.clean = false; result.econo = false; result.filter = false; result.beep = false; result.sleep = -1; result.clock = -1; return result; } // Convert the internal state into a human readable string. String IRDaikin216::toString(void) { String result = ""; result.reserve(120); // Reserve some heap for the string to reduce fragging. result += addBoolToString(getPower(), kPowerStr, false); result += addModeToString(getMode(), kDaikinAuto, kDaikinCool, kDaikinHeat, kDaikinDry, kDaikinFan); result += addTempToString(getTemp()); result += addFanToString(getFan(), kDaikinFanMax, kDaikinFanMin, kDaikinFanAuto, kDaikinFanQuiet, kDaikinFanMed); result += addBoolToString(getSwingHorizontal(), kSwingHStr); result += addBoolToString(getSwingVertical(), kSwingVStr); result += addBoolToString(getQuiet(), kQuietStr); result += addBoolToString(getPowerful(), kPowerfulStr); return result; } #if DECODE_DAIKIN216 // Decode the supplied Daikin 216 bit A/C message. // Args: // results: Ptr to the data to decode and where to store the decode result. // nbits: Nr. of bits to expect in the data portion. (kDaikin216Bits) // strict: Flag to indicate if we strictly adhere to the specification. // Returns: // boolean: True if it can decode it, false if it can't. // // Supported devices: // - Daikin ARC433B69 remote. // // Status: BETA / Should be working. // // Ref: // https://github.com/crankyoldgit/IRremoteESP8266/issues/689 // https://github.com/danny-source/Arduino_DY_IRDaikin bool IRrecv::decodeDaikin216(decode_results *results, const uint16_t nbits, const bool strict) { if (results->rawlen < 2 * (nbits + kHeader + kFooter) - 1) return false; // Compliance if (strict && nbits != kDaikin216Bits) return false; uint16_t offset = kStartOffset; const uint8_t ksectionSize[kDaikin216Sections] = {kDaikin216Section1Length, kDaikin216Section2Length}; // Sections uint16_t pos = 0; for (uint8_t section = 0; section < kDaikin216Sections; section++) { uint16_t used; // Section Header + Section Data + Section Footer used = matchGeneric(results->rawbuf + offset, results->state + pos, results->rawlen - offset, ksectionSize[section] * 8, kDaikin216HdrMark, kDaikin216HdrSpace, kDaikin216BitMark, kDaikin216OneSpace, kDaikin216BitMark, kDaikin216ZeroSpace, kDaikin216BitMark, kDaikin216Gap, section >= kDaikin216Sections - 1, kDaikinTolerance, kDaikinMarkExcess, false); if (used == 0) return false; offset += used; pos += ksectionSize[section]; } // Compliance if (strict) { if (pos * 8 != kDaikin216Bits) return false; // Validate the checksum. if (!IRDaikin216::validChecksum(results->state)) return false; } // Success results->decode_type = decode_type_t::DAIKIN216; results->bits = nbits; // No need to record the state as we stored it as we decoded it. // As we use result->state, we don't record value, address, or command as it // is a union data type. return true; } #endif // DECODE_DAIKIN216 #if SEND_DAIKIN160 // Send a Daikin 160 bit A/C message. // // Args: // data: An array of kDaikin160StateLength bytes containing the IR command. // // Status: STABLE / Confirmed working. // // Supported devices: // - Daikin ARC423A5 remote. // // Ref: // https://github.com/crankyoldgit/IRremoteESP8266/issues/731 void IRsend::sendDaikin160(const unsigned char data[], const uint16_t nbytes, const uint16_t repeat) { if (nbytes < kDaikin160Section1Length) return; // Not enough bytes to send a partial message. for (uint16_t r = 0; r <= repeat; r++) { // Section #1 sendGeneric(kDaikin160HdrMark, kDaikin160HdrSpace, kDaikin160BitMark, kDaikin160OneSpace, kDaikin160BitMark, kDaikin160ZeroSpace, kDaikin160BitMark, kDaikin160Gap, data, kDaikin160Section1Length, kDaikin160Freq, false, 0, kDutyDefault); // Section #2 sendGeneric(kDaikin160HdrMark, kDaikin160HdrSpace, kDaikin160BitMark, kDaikin160OneSpace, kDaikin160BitMark, kDaikin160ZeroSpace, kDaikin160BitMark, kDaikin160Gap, data + kDaikin160Section1Length, nbytes - kDaikin160Section1Length, kDaikin160Freq, false, 0, kDutyDefault); } } #endif // SEND_DAIKIN160 // Class for handling Daikin 160 bit / 20 byte A/C messages. // // Code by crankyoldgit. // // Supported Remotes: Daikin ARC423A5 remote // // Ref: // https://github.com/crankyoldgit/IRremoteESP8266/issues/731 IRDaikin160::IRDaikin160(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { stateReset(); } void IRDaikin160::begin(void) { _irsend.begin(); } // Verify the checksum is valid for a given state. // Args: // state: The array to verify the checksum of. // length: The size of the state. // Returns: // A boolean. bool IRDaikin160::validChecksum(uint8_t state[], const uint16_t length) { // Validate the checksum of section #1. if (length <= kDaikin160Section1Length - 1 || state[kDaikin160Section1Length - 1] != sumBytes( state, kDaikin160Section1Length - 1)) return false; // Validate the checksum of section #2 (a.k.a. the rest) if (length <= kDaikin160Section1Length + 1 || state[length - 1] != sumBytes(state + kDaikin160Section1Length, length - kDaikin160Section1Length - 1)) return false; return true; } // Calculate and set the checksum values for the internal state. void IRDaikin160::checksum(void) { remote_state[kDaikin160Section1Length - 1] = sumBytes( remote_state, kDaikin160Section1Length - 1); remote_state[kDaikin160StateLength - 1] = sumBytes( remote_state + kDaikin160Section1Length, kDaikin160Section2Length - 1); } void IRDaikin160::stateReset(void) { for (uint8_t i = 0; i < kDaikin160StateLength; i++) remote_state[i] = 0x00; remote_state[0] = 0x11; remote_state[1] = 0xDA; remote_state[2] = 0x27; remote_state[3] = 0xF0; remote_state[4] = 0x0D; // remote_state[6] is a checksum byte, it will be set by checksum(). remote_state[7] = 0x11; remote_state[8] = 0xDA; remote_state[9] = 0x27; remote_state[11] = 0xD3; remote_state[12] = 0x30; remote_state[13] = 0x11; remote_state[16] = 0x1E; remote_state[17] = 0x0A; remote_state[18] = 0x08; // remote_state[19] is a checksum byte, it will be set by checksum(). } uint8_t *IRDaikin160::getRaw(void) { checksum(); // Ensure correct settings before sending. return remote_state; } void IRDaikin160::setRaw(const uint8_t new_code[]) { memcpy(remote_state, new_code, kDaikin160StateLength); } #if SEND_DAIKIN160 void IRDaikin160::send(const uint16_t repeat) { _irsend.sendDaikin160(getRaw(), kDaikin160StateLength, repeat); } #endif // SEND_DAIKIN160 void IRDaikin160::on(void) { setPower(true); } void IRDaikin160::off(void) { setPower(false); } void IRDaikin160::setPower(const bool on) { setBit(&remote_state[kDaikin160BytePower], kDaikinBitPowerOffset, on); } bool IRDaikin160::getPower(void) { return GETBIT8(remote_state[kDaikin160BytePower], kDaikinBitPowerOffset); } uint8_t IRDaikin160::getMode(void) { return GETBITS8(remote_state[kDaikin160ByteMode], kHighNibble, kModeBitsSize); } void IRDaikin160::setMode(const uint8_t mode) { switch (mode) { case kDaikinAuto: case kDaikinCool: case kDaikinHeat: case kDaikinFan: case kDaikinDry: setBits(&remote_state[kDaikin160ByteMode], kHighNibble, kModeBitsSize, mode); break; default: this->setMode(kDaikinAuto); } } // Convert a standard A/C mode into its native mode. uint8_t IRDaikin160::convertMode(const stdAc::opmode_t mode) { return IRDaikinESP::convertMode(mode); } // Set the temp in deg C void IRDaikin160::setTemp(const uint8_t temp) { uint8_t degrees = std::max(temp, kDaikinMinTemp); degrees = std::min(degrees, kDaikinMaxTemp) - 10; setBits(&remote_state[kDaikin160ByteTemp], kDaikin160TempOffset, kDaikin160TempSize, degrees); } uint8_t IRDaikin160::getTemp(void) { return GETBITS8(remote_state[kDaikin160ByteTemp], kDaikin160TempOffset, kDaikin160TempSize) + 10; } // Set the speed of the fan, 1-5 or kDaikinFanAuto or kDaikinFanQuiet void IRDaikin160::setFan(const uint8_t fan) { uint8_t fanset; if (fan == kDaikinFanQuiet || fan == kDaikinFanAuto) fanset = fan; else if (fan < kDaikinFanMin || fan > kDaikinFanMax) fanset = kDaikinFanAuto; else fanset = 2 + fan; // Set the fan speed bits, leave *upper* 4 bits alone setBits(&remote_state[kDaikin160ByteFan], kLowNibble, kDaikinFanSize, fanset); } uint8_t IRDaikin160::getFan(void) { uint8_t fan = GETBITS8(remote_state[kDaikin160ByteFan], kLowNibble, kDaikinFanSize); if (fan != kDaikinFanQuiet && fan != kDaikinFanAuto) fan -= 2; return fan; } // Convert a standard A/C Fan speed into its native fan speed. uint8_t IRDaikin160::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: return kDaikinFanMin; case stdAc::fanspeed_t::kLow: return kDaikinFanMin + 1; case stdAc::fanspeed_t::kMedium: return kDaikinFanMin + 2; case stdAc::fanspeed_t::kHigh: return kDaikinFanMax - 1; case stdAc::fanspeed_t::kMax: return kDaikinFanMax; default: return kDaikinFanAuto; } } void IRDaikin160::setSwingVertical(const uint8_t position) { switch (position) { case kDaikin160SwingVLowest: case kDaikin160SwingVLow: case kDaikin160SwingVMiddle: case kDaikin160SwingVHigh: case kDaikin160SwingVHighest: case kDaikin160SwingVAuto: setBits(&remote_state[kDaikin160ByteSwingV], kHighNibble, kDaikinSwingSize, position); break; default: setSwingVertical(kDaikin160SwingVAuto); } } uint8_t IRDaikin160::getSwingVertical(void) { return GETBITS8(remote_state[kDaikin160ByteSwingV], kHighNibble, kDaikinSwingSize); } // Convert a standard A/C vertical swing into its native version. uint8_t IRDaikin160::convertSwingV(const stdAc::swingv_t position) { switch (position) { case stdAc::swingv_t::kHighest: case stdAc::swingv_t::kHigh: case stdAc::swingv_t::kMiddle: case stdAc::swingv_t::kLow: case stdAc::swingv_t::kLowest: return kDaikin160SwingVHighest + 1 - (uint8_t)position; default: return kDaikin160SwingVAuto; } } // Convert a native vertical swing to it's common equivalent. stdAc::swingv_t IRDaikin160::toCommonSwingV(const uint8_t setting) { switch (setting) { case kDaikin160SwingVHighest: return stdAc::swingv_t::kHighest; case kDaikin160SwingVHigh: return stdAc::swingv_t::kHigh; case kDaikin160SwingVMiddle: return stdAc::swingv_t::kMiddle; case kDaikin160SwingVLow: return stdAc::swingv_t::kLow; case kDaikin160SwingVLowest: return stdAc::swingv_t::kLowest; default: return stdAc::swingv_t::kAuto; } } // Convert the A/C state to it's common equivalent. stdAc::state_t IRDaikin160::toCommon(void) { stdAc::state_t result; result.protocol = decode_type_t::DAIKIN160; result.model = -1; // No models used. result.power = this->getPower(); result.mode = IRDaikinESP::toCommonMode(this->getMode()); result.celsius = true; result.degrees = this->getTemp(); result.fanspeed = IRDaikinESP::toCommonFanSpeed(this->getFan()); result.swingv = this->toCommonSwingV(this->getSwingVertical()); // Not supported. result.swingh = stdAc::swingh_t::kOff; result.quiet = false; result.turbo = false; result.light = false; result.clean = false; result.econo = false; result.filter = false; result.beep = false; result.sleep = -1; result.clock = -1; return result; } // Convert the internal state into a human readable string. String IRDaikin160::toString(void) { String result = ""; result.reserve(150); // Reserve some heap for the string to reduce fragging. result += addBoolToString(getPower(), kPowerStr, false); result += addModeToString(getMode(), kDaikinAuto, kDaikinCool, kDaikinHeat, kDaikinDry, kDaikinFan); result += addTempToString(getTemp()); result += addFanToString(getFan(), kDaikinFanMax, kDaikinFanMin, kDaikinFanAuto, kDaikinFanQuiet, kDaikinFanMed); result += addIntToString(getSwingVertical(), kSwingVStr); result += kSpaceLBraceStr; switch (getSwingVertical()) { case kDaikin160SwingVHighest: result += kHighestStr; break; case kDaikin160SwingVHigh: result += kHighStr; break; case kDaikin160SwingVMiddle: result += kMiddleStr; break; case kDaikin160SwingVLow: result += kLowStr; break; case kDaikin160SwingVLowest: result += kLowestStr; break; case kDaikin160SwingVAuto: result += kAutoStr; break; default: result += kUnknownStr; } result += ')'; return result; } #if DECODE_DAIKIN160 // Decode the supplied Daikin 160 bit A/C message. // Args: // results: Ptr to the data to decode and where to store the decode result. // nbits: Nr. of bits to expect in the data portion. (kDaikin160Bits) // strict: Flag to indicate if we strictly adhere to the specification. // Returns: // boolean: True if it can decode it, false if it can't. // // Supported devices: // - Daikin ARC423A5 remote. // // Status: STABLE / Confirmed working. // // Ref: // https://github.com/crankyoldgit/IRremoteESP8266/issues/731 bool IRrecv::decodeDaikin160(decode_results *results, const uint16_t nbits, const bool strict) { if (results->rawlen < 2 * (nbits + kHeader + kFooter) - 1) return false; // Compliance if (strict && nbits != kDaikin160Bits) return false; uint16_t offset = kStartOffset; const uint8_t ksectionSize[kDaikin160Sections] = {kDaikin160Section1Length, kDaikin160Section2Length}; // Sections uint16_t pos = 0; for (uint8_t section = 0; section < kDaikin160Sections; section++) { uint16_t used; // Section Header + Section Data (7 bytes) + Section Footer used = matchGeneric(results->rawbuf + offset, results->state + pos, results->rawlen - offset, ksectionSize[section] * 8, kDaikin160HdrMark, kDaikin160HdrSpace, kDaikin160BitMark, kDaikin160OneSpace, kDaikin160BitMark, kDaikin160ZeroSpace, kDaikin160BitMark, kDaikin160Gap, section >= kDaikin160Sections - 1, kDaikinTolerance, kDaikinMarkExcess, false); if (used == 0) return false; offset += used; pos += ksectionSize[section]; } // Compliance if (strict) { // Validate the checksum. if (!IRDaikin160::validChecksum(results->state)) return false; } // Success results->decode_type = decode_type_t::DAIKIN160; results->bits = nbits; // No need to record the state as we stored it as we decoded it. // As we use result->state, we don't record value, address, or command as it // is a union data type. return true; } #endif // DECODE_DAIKIN160 #if SEND_DAIKIN176 // Send a Daikin 176 bit A/C message. // // Args: // data: An array of kDaikin176StateLength bytes containing the IR command. // // Status: Alpha/Untested on a real device. // // Supported devices: // - Daikin BRC4C153 remote. // void IRsend::sendDaikin176(const unsigned char data[], const uint16_t nbytes, const uint16_t repeat) { if (nbytes < kDaikin176Section1Length) return; // Not enough bytes to send a partial message. for (uint16_t r = 0; r <= repeat; r++) { // Section #1 sendGeneric(kDaikin176HdrMark, kDaikin176HdrSpace, kDaikin176BitMark, kDaikin176OneSpace, kDaikin176BitMark, kDaikin176ZeroSpace, kDaikin176BitMark, kDaikin176Gap, data, kDaikin176Section1Length, kDaikin176Freq, false, 0, kDutyDefault); // Section #2 sendGeneric(kDaikin176HdrMark, kDaikin176HdrSpace, kDaikin176BitMark, kDaikin176OneSpace, kDaikin176BitMark, kDaikin176ZeroSpace, kDaikin176BitMark, kDaikin176Gap, data + kDaikin176Section1Length, nbytes - kDaikin176Section1Length, kDaikin176Freq, false, 0, kDutyDefault); } } #endif // SEND_DAIKIN176 // Class for handling Daikin 176 bit / 22 byte A/C messages. // // Code by crankyoldgit. // // Supported Remotes: Daikin BRC4C153 remote // IRDaikin176::IRDaikin176(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { stateReset(); } void IRDaikin176::begin(void) { _irsend.begin(); } // Verify the checksum is valid for a given state. // Args: // state: The array to verify the checksum of. // length: The size of the state. // Returns: // A boolean. bool IRDaikin176::validChecksum(uint8_t state[], const uint16_t length) { // Validate the checksum of section #1. if (length <= kDaikin176Section1Length - 1 || state[kDaikin176Section1Length - 1] != sumBytes( state, kDaikin176Section1Length - 1)) return false; // Validate the checksum of section #2 (a.k.a. the rest) if (length <= kDaikin176Section1Length + 1 || state[length - 1] != sumBytes(state + kDaikin176Section1Length, length - kDaikin176Section1Length - 1)) return false; return true; } // Calculate and set the checksum values for the internal state. void IRDaikin176::checksum(void) { remote_state[kDaikin176Section1Length - 1] = sumBytes( remote_state, kDaikin176Section1Length - 1); remote_state[kDaikin176StateLength - 1] = sumBytes( remote_state + kDaikin176Section1Length, kDaikin176Section2Length - 1); } void IRDaikin176::stateReset(void) { for (uint8_t i = 0; i < kDaikin176StateLength; i++) remote_state[i] = 0x00; remote_state[0] = 0x11; remote_state[1] = 0xDA; remote_state[2] = 0x17; remote_state[3] = 0x18; remote_state[4] = 0x04; // remote_state[6] is a checksum byte, it will be set by checksum(). remote_state[7] = 0x11; remote_state[8] = 0xDA; remote_state[9] = 0x17; remote_state[10] = 0x18; remote_state[12] = 0x73; remote_state[14] = 0x20; remote_state[18] = 0x16; // Fan speed and swing remote_state[20] = 0x20; // remote_state[21] is a checksum byte, it will be set by checksum(). _saved_temp = getTemp(); } uint8_t *IRDaikin176::getRaw(void) { checksum(); // Ensure correct settings before sending. return remote_state; } void IRDaikin176::setRaw(const uint8_t new_code[]) { memcpy(remote_state, new_code, kDaikin176StateLength); _saved_temp = getTemp(); } #if SEND_DAIKIN176 void IRDaikin176::send(const uint16_t repeat) { _irsend.sendDaikin176(getRaw(), kDaikin176StateLength, repeat); } #endif // SEND_DAIKIN176 void IRDaikin176::on(void) { setPower(true); } void IRDaikin176::off(void) { setPower(false); } void IRDaikin176::setPower(const bool on) { remote_state[kDaikin176ByteModeButton] = 0; setBit(&remote_state[kDaikin176BytePower], kDaikinBitPowerOffset, on); } bool IRDaikin176::getPower(void) { return GETBIT8(remote_state[kDaikin176BytePower], kDaikinBitPowerOffset); } uint8_t IRDaikin176::getMode(void) { return GETBITS8(remote_state[kDaikin176ByteMode], kHighNibble, kModeBitsSize); } void IRDaikin176::setMode(const uint8_t mode) { uint8_t altmode = 0; switch (mode) { case kDaikinFan: altmode = 0; break; case kDaikinDry: altmode = 7; break; case kDaikin176Cool: altmode = 2; break; default: this->setMode(kDaikin176Cool); return; } // Set the mode. setBits(&remote_state[kDaikin176ByteMode], kHighNibble, kModeBitsSize, mode); setBits(&remote_state[kDaikin176BytePower], kHighNibble, kModeBitsSize, altmode); setTemp(_saved_temp); // Needs to happen after setTemp() as it will clear it. remote_state[kDaikin176ByteModeButton] = kDaikin176ModeButton; } // Convert a standard A/C mode into its native mode. uint8_t IRDaikin176::convertMode(const stdAc::opmode_t mode) { switch (mode) { case stdAc::opmode_t::kDry: return kDaikinDry; case stdAc::opmode_t::kHeat: // Heat not supported, but fan is the closest. case stdAc::opmode_t::kFan: return kDaikinFan; default: return kDaikin176Cool; } } // Convert a native mode to it's common equivalent. stdAc::opmode_t IRDaikin176::toCommonMode(const uint8_t mode) { switch (mode) { case kDaikinDry: return stdAc::opmode_t::kDry; case kDaikinHeat: // There is no heat mode, but fan is the closest. case kDaikinFan: return stdAc::opmode_t::kFan; default: return stdAc::opmode_t::kCool; } } // Set the temp in deg C void IRDaikin176::setTemp(const uint8_t temp) { uint8_t degrees = std::min(kDaikinMaxTemp, std::max(temp, kDaikinMinTemp)); _saved_temp = degrees; switch (getMode()) { case kDaikinDry: case kDaikinFan: degrees = kDaikin176DryFanTemp; } setBits(&remote_state[kDaikin176ByteTemp], kDaikin176TempOffset, kDaikin176TempSize, degrees - 9); remote_state[kDaikin176ByteModeButton] = 0; } uint8_t IRDaikin176::getTemp(void) { return GETBITS8(remote_state[kDaikin176ByteTemp], kDaikin176TempOffset, kDaikin176TempSize) + 9; } // Set the speed of the fan, 1 for Min or 3 for Max void IRDaikin176::setFan(const uint8_t fan) { switch (fan) { case kDaikinFanMin: case kDaikin176FanMax: setBits(&remote_state[kDaikin176ByteFan], kHighNibble, kDaikinFanSize, fan); remote_state[kDaikin176ByteModeButton] = 0; break; default: setFan(kDaikin176FanMax); } } uint8_t IRDaikin176::getFan(void) { return GETBITS8(remote_state[kDaikin176ByteFan], kHighNibble, kDaikinFanSize); } // Convert a standard A/C Fan speed into its native fan speed. uint8_t IRDaikin176::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: case stdAc::fanspeed_t::kLow: return kDaikinFanMin; default: return kDaikin176FanMax; } } void IRDaikin176::setSwingHorizontal(const uint8_t position) { switch (position) { case kDaikin176SwingHOff: case kDaikin176SwingHAuto: setBits(&remote_state[kDaikin176ByteSwingH], kLowNibble, kDaikinSwingSize, position); break; default: setSwingHorizontal(kDaikin176SwingHAuto); } } uint8_t IRDaikin176::getSwingHorizontal(void) { return GETBITS8(remote_state[kDaikin176ByteSwingH], kLowNibble, kDaikinSwingSize); } // Convert a standard A/C horizontal swing into its native version. uint8_t IRDaikin176::convertSwingH(const stdAc::swingh_t position) { switch (position) { case stdAc::swingh_t::kOff: return kDaikin176SwingHOff; case stdAc::swingh_t::kAuto: return kDaikin176SwingHAuto; default: return kDaikin176SwingHAuto; } } // Convert a native horizontal swing to it's common equivalent. stdAc::swingh_t IRDaikin176::toCommonSwingH(const uint8_t setting) { switch (setting) { case kDaikin176SwingHOff: return stdAc::swingh_t::kOff; case kDaikin176SwingHAuto: return stdAc::swingh_t::kAuto; default: return stdAc::swingh_t::kAuto; } } // Convert a native fan speed to it's common equivalent. stdAc::fanspeed_t IRDaikin176::toCommonFanSpeed(const uint8_t speed) { return (speed == kDaikinFanMin) ? stdAc::fanspeed_t::kMin : stdAc::fanspeed_t::kMax; } // Convert the A/C state to it's common equivalent. stdAc::state_t IRDaikin176::toCommon(void) { stdAc::state_t result; result.protocol = decode_type_t::DAIKIN176; result.model = -1; // No models used. result.power = this->getPower(); result.mode = IRDaikin176::toCommonMode(this->getMode()); result.celsius = true; result.degrees = this->getTemp(); result.fanspeed = this->toCommonFanSpeed(this->getFan()); result.swingh = this->toCommonSwingH(this->getSwingHorizontal()); // Not supported. result.swingv = stdAc::swingv_t::kOff; result.quiet = false; result.turbo = false; result.light = false; result.clean = false; result.econo = false; result.filter = false; result.beep = false; result.sleep = -1; result.clock = -1; return result; } // Convert the internal state into a human readable string. String IRDaikin176::toString(void) { String result = ""; result.reserve(80); // Reserve some heap for the string to reduce fragging. result += addBoolToString(getPower(), kPowerStr, false); result += addModeToString(getMode(), kDaikinAuto, kDaikin176Cool, kDaikinHeat, kDaikinDry, kDaikinFan); result += addTempToString(getTemp()); result += addFanToString(getFan(), kDaikin176FanMax, kDaikinFanMin, kDaikinFanMin, kDaikinFanMin, kDaikinFanMin); result += addIntToString(getSwingHorizontal(), kSwingHStr); result += kSpaceLBraceStr; switch (getSwingHorizontal()) { case kDaikin176SwingHAuto: result += kAutoStr; break; case kDaikin176SwingHOff: result += kOffStr; break; default: result += kUnknownStr; } result += ')'; return result; } #if DECODE_DAIKIN176 // Decode the supplied Daikin 176 bit A/C message. // Args: // results: Ptr to the data to decode and where to store the decode result. // nbits: Nr. of bits to expect in the data portion. (kDaikin176Bits) // strict: Flag to indicate if we strictly adhere to the specification. // Returns: // boolean: True if it can decode it, false if it can't. // // Supported devices: // - Daikin BRC4C153 remote. // // Status: BETA / Probably works. // bool IRrecv::decodeDaikin176(decode_results *results, const uint16_t nbits, const bool strict) { if (results->rawlen < 2 * (nbits + kHeader + kFooter) - 1) return false; // Compliance if (strict && nbits != kDaikin176Bits) return false; uint16_t offset = kStartOffset; const uint8_t ksectionSize[kDaikin176Sections] = {kDaikin176Section1Length, kDaikin176Section2Length}; // Sections uint16_t pos = 0; for (uint8_t section = 0; section < kDaikin176Sections; section++) { uint16_t used; // Section Header + Section Data (7 bytes) + Section Footer used = matchGeneric(results->rawbuf + offset, results->state + pos, results->rawlen - offset, ksectionSize[section] * 8, kDaikin176HdrMark, kDaikin176HdrSpace, kDaikin176BitMark, kDaikin176OneSpace, kDaikin176BitMark, kDaikin176ZeroSpace, kDaikin176BitMark, kDaikin176Gap, section >= kDaikin176Sections - 1, kDaikinTolerance, kDaikinMarkExcess, false); if (used == 0) return false; offset += used; pos += ksectionSize[section]; } // Compliance if (strict) { // Validate the checksum. if (!IRDaikin176::validChecksum(results->state)) return false; } // Success results->decode_type = decode_type_t::DAIKIN176; results->bits = nbits; // No need to record the state as we stored it as we decoded it. // As we use result->state, we don't record value, address, or command as it // is a union data type. return true; } #endif // DECODE_DAIKIN176 #if SEND_DAIKIN128 // Send a Daikin 128 bit A/C message. // // Args: // data: An array of kDaikin128StateLength bytes containing the IR command. // // Status: STABLE / Known Working. // // Supported devices: // - Daikin BRC52B63 remote. // // Ref: https://github.com/crankyoldgit/IRremoteESP8266/issues/827 void IRsend::sendDaikin128(const unsigned char data[], const uint16_t nbytes, const uint16_t repeat) { if (nbytes < kDaikin128SectionLength) return; // Not enough bytes to send a partial message. for (uint16_t r = 0; r <= repeat; r++) { enableIROut(kDaikin128Freq); // Leader for (uint8_t i = 0; i < 2; i++) { mark(kDaikin128LeaderMark); space(kDaikin128LeaderSpace); } // Section #1 (Header + Data) sendGeneric(kDaikin128HdrMark, kDaikin128HdrSpace, kDaikin128BitMark, kDaikin128OneSpace, kDaikin128BitMark, kDaikin128ZeroSpace, kDaikin128BitMark, kDaikin128Gap, data, kDaikin128SectionLength, kDaikin128Freq, false, 0, kDutyDefault); // Section #2 (Data + Footer) sendGeneric(0, 0, kDaikin128BitMark, kDaikin128OneSpace, kDaikin128BitMark, kDaikin128ZeroSpace, kDaikin128FooterMark, kDaikin128Gap, data + kDaikin128SectionLength, nbytes - kDaikin128SectionLength, kDaikin128Freq, false, 0, kDutyDefault); } } #endif // SEND_DAIKIN128 // Class for handling Daikin 128 bit / 16 byte A/C messages. // // Code by crankyoldgit. // Analysis by Daniel Vena // // Status: STABLE / Known Working. // // Supported Remotes: Daikin BRC52B63 remote // IRDaikin128::IRDaikin128(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { stateReset(); } void IRDaikin128::begin(void) { _irsend.begin(); } uint8_t IRDaikin128::calcFirstChecksum(const uint8_t state[]) { return sumNibbles(state, kDaikin128SectionLength - 1, state[kDaikin128SectionLength - 1] & 0x0F) & 0x0F; } uint8_t IRDaikin128::calcSecondChecksum(const uint8_t state[]) { return sumNibbles(state + kDaikin128SectionLength, kDaikin128SectionLength - 1); } // Verify the checksum is valid for a given state. // Args: // state: The array to verify the checksum of. // Returns: // A boolean. bool IRDaikin128::validChecksum(uint8_t state[]) { // Validate the checksum of section #1. if (state[kDaikin128SectionLength - 1] >> 4 != calcFirstChecksum(state)) return false; // Validate the checksum of section #2 if (state[kDaikin128StateLength - 1] != calcSecondChecksum(state)) return false; return true; } // Calculate and set the checksum values for the internal state. void IRDaikin128::checksum(void) { remote_state[kDaikin128SectionLength - 1] &= 0x0F; // Clear upper half. remote_state[kDaikin128SectionLength - 1] |= (calcFirstChecksum(remote_state) << 4); remote_state[kDaikin128StateLength - 1] = calcSecondChecksum(remote_state); } void IRDaikin128::stateReset(void) { for (uint8_t i = 0; i < kDaikin128StateLength; i++) remote_state[i] = 0x00; remote_state[0] = 0x16; remote_state[7] = 0x04; // Most significant nibble is a checksum. remote_state[8] = 0xA1; // remote_state[15] is a checksum byte, it will be set by checksum(). } uint8_t *IRDaikin128::getRaw(void) { checksum(); // Ensure correct settings before sending. return remote_state; } void IRDaikin128::setRaw(const uint8_t new_code[]) { memcpy(remote_state, new_code, kDaikin128StateLength); } #if SEND_DAIKIN128 void IRDaikin128::send(const uint16_t repeat) { _irsend.sendDaikin128(getRaw(), kDaikin128StateLength, repeat); } #endif // SEND_DAIKIN128 void IRDaikin128::setPowerToggle(const bool toggle) { setBit(&remote_state[kDaikin128BytePowerSwingSleep], kDaikin128BitPowerToggleOffset, toggle); } bool IRDaikin128::getPowerToggle(void) { return GETBIT8(remote_state[kDaikin128BytePowerSwingSleep], kDaikin128BitPowerToggleOffset); } uint8_t IRDaikin128::getMode(void) { return GETBITS8(remote_state[kDaikin128ByteModeFan], kLowNibble, kDaikin128ModeSize); } void IRDaikin128::setMode(const uint8_t mode) { switch (mode) { case kDaikin128Auto: case kDaikin128Cool: case kDaikin128Heat: case kDaikin128Fan: case kDaikin128Dry: setBits(&remote_state[kDaikin128ByteModeFan], kLowNibble, kDaikin128ModeSize, mode); break; default: this->setMode(kDaikin128Auto); return; } // Force a reset of mode dependant things. setFan(getFan()); // Covers Quiet & Powerful too. setEcono(getEcono()); } // Convert a standard A/C mode into its native mode. uint8_t IRDaikin128::convertMode(const stdAc::opmode_t mode) { switch (mode) { case stdAc::opmode_t::kCool: return kDaikin128Cool; case stdAc::opmode_t::kHeat: return kDaikin128Heat; case stdAc::opmode_t::kDry: return kDaikinDry; case stdAc::opmode_t::kFan: return kDaikin128Fan; default: return kDaikin128Auto; } } // Convert a native mode to it's common equivalent. stdAc::opmode_t IRDaikin128::toCommonMode(const uint8_t mode) { switch (mode) { case kDaikin128Cool: return stdAc::opmode_t::kCool; case kDaikin128Heat: return stdAc::opmode_t::kHeat; case kDaikin128Dry: return stdAc::opmode_t::kDry; case kDaikin128Fan: return stdAc::opmode_t::kFan; default: return stdAc::opmode_t::kAuto; } } // Set the temp in deg C void IRDaikin128::setTemp(const uint8_t temp) { remote_state[kDaikin128ByteTemp] = uint8ToBcd( std::min(kDaikin128MaxTemp, std::max(temp, kDaikin128MinTemp))); } uint8_t IRDaikin128::getTemp(void) { return bcdToUint8(remote_state[kDaikin128ByteTemp]); } uint8_t IRDaikin128::getFan(void) { return GETBITS8(remote_state[kDaikin128ByteModeFan], kHighNibble, kDaikinFanSize); } void IRDaikin128::setFan(const uint8_t speed) { uint8_t new_speed = speed; uint8_t mode = getMode(); switch (speed) { case kDaikin128FanQuiet: case kDaikin128FanPowerful: if (mode == kDaikin128Auto) new_speed = kDaikin128FanAuto; // FALL-THRU case kDaikin128FanAuto: case kDaikin128FanHigh: case kDaikin128FanMed: case kDaikin128FanLow: setBits(&remote_state[kDaikin128ByteModeFan], kHighNibble, kDaikinFanSize, new_speed); break; default: this->setFan(kDaikin128FanAuto); } } // Convert a standard A/C Fan speed into its native fan speed. uint8_t IRDaikin128::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: return kDaikinFanQuiet; case stdAc::fanspeed_t::kLow: return kDaikin128FanLow; case stdAc::fanspeed_t::kMedium: return kDaikin128FanMed; case stdAc::fanspeed_t::kHigh: return kDaikin128FanHigh; case stdAc::fanspeed_t::kMax: return kDaikin128FanPowerful; default: return kDaikin128FanAuto; } } // Convert a native fan speed to it's common equivalent. stdAc::fanspeed_t IRDaikin128::toCommonFanSpeed(const uint8_t speed) { switch (speed) { case kDaikin128FanPowerful: return stdAc::fanspeed_t::kMax; case kDaikin128FanHigh: return stdAc::fanspeed_t::kHigh; case kDaikin128FanMed: return stdAc::fanspeed_t::kMedium; case kDaikin128FanLow: return stdAc::fanspeed_t::kLow; case kDaikinFanQuiet: return stdAc::fanspeed_t::kMin; default: return stdAc::fanspeed_t::kAuto; } } void IRDaikin128::setSwingVertical(const bool on) { setBit(&remote_state[kDaikin128BytePowerSwingSleep], kDaikin128BitSwingOffset, on); } bool IRDaikin128::getSwingVertical(void) { return GETBIT8(remote_state[kDaikin128BytePowerSwingSleep], kDaikin128BitSwingOffset); } void IRDaikin128::setSleep(const bool on) { setBit(&remote_state[kDaikin128BytePowerSwingSleep], kDaikin128BitSleepOffset, on); } bool IRDaikin128::getSleep(void) { return GETBIT8(remote_state[kDaikin128BytePowerSwingSleep], kDaikin128BitSleepOffset); } void IRDaikin128::setEcono(const bool on) { uint8_t mode = getMode(); setBit(&remote_state[kDaikin128ByteEconoLight], kDaikin128BitEconoOffset, on && (mode == kDaikin128Cool || mode == kDaikin128Heat)); } bool IRDaikin128::getEcono(void) { return GETBIT8(remote_state[kDaikin128ByteEconoLight], kDaikin128BitEconoOffset); } void IRDaikin128::setQuiet(const bool on) { uint8_t mode = getMode(); if (on && (mode == kDaikin128Cool || mode == kDaikin128Heat)) setFan(kDaikin128FanQuiet); else if (getFan() == kDaikin128FanQuiet) setFan(kDaikin128FanAuto); } bool IRDaikin128::getQuiet(void) { return getFan() == kDaikin128FanQuiet; } void IRDaikin128::setPowerful(const bool on) { uint8_t mode = getMode(); if (on && (mode == kDaikin128Cool || mode == kDaikin128Heat)) setFan(kDaikin128FanPowerful); else if (getFan() == kDaikin128FanPowerful) setFan(kDaikin128FanAuto); } bool IRDaikin128::getPowerful(void) { return getFan() == kDaikin128FanPowerful; } // Set the clock in mins since midnight void IRDaikin128::setClock(const uint16_t mins_since_midnight) { uint16_t mins = mins_since_midnight; if (mins_since_midnight >= 24 * 60) mins = 0; // Bounds check. // Hours. remote_state[kDaikin128ByteClockHours] = uint8ToBcd(mins / 60); // Minutes. remote_state[kDaikin128ByteClockMins] = uint8ToBcd(mins % 60); } uint16_t IRDaikin128::getClock(void) { return bcdToUint8(remote_state[kDaikin128ByteClockHours]) * 60 + bcdToUint8(remote_state[kDaikin128ByteClockMins]); } void IRDaikin128::setOnTimerEnabled(const bool on) { setBit(&remote_state[kDaikin128ByteOnTimer], kDaikin128BitTimerEnabledOffset, on); } bool IRDaikin128::getOnTimerEnabled(void) { return GETBIT8(remote_state[kDaikin128ByteOnTimer], kDaikin128BitTimerEnabledOffset); } // Timer is rounds down to the nearest half hour. // Args: // ptr: A PTR to the byte containing the Timer value to be updated. // mins_since_midnight: The number of minutes the new timer should be set to. void IRDaikin128::setTimer(uint8_t *ptr, const uint16_t mins_since_midnight) { uint16_t mins = mins_since_midnight; if (mins_since_midnight >= 24 * 60) mins = 0; // Bounds check. // Set the half hour bit setBit(ptr, kDaikin128HalfHourOffset, (mins % 60) >= 30); // Set the nr of whole hours. setBits(ptr, kDaikin128HoursOffset, kDaikin128HoursSize, uint8ToBcd(mins / 60)); } // Timer is stored in nr of half hours internally. // Args: // ptr: A PTR to the byte containing the Timer value. // Returns: // A uint16_t containing the number of minutes since midnight. uint16_t IRDaikin128::getTimer(const uint8_t *ptr) { return bcdToUint8(GETBITS8(*ptr, kDaikin128HoursOffset, kDaikin128HoursSize)) * 60 + (GETBIT8(*ptr, kDaikin128HalfHourOffset) ? 30 : 0); } void IRDaikin128::setOnTimer(const uint16_t mins_since_midnight) { setTimer(remote_state + kDaikin128ByteOnTimer, mins_since_midnight); } uint16_t IRDaikin128::getOnTimer(void) { return getTimer(remote_state + kDaikin128ByteOnTimer); } void IRDaikin128::setOffTimerEnabled(const bool on) { setBit(&remote_state[kDaikin128ByteOffTimer], kDaikin128BitTimerEnabledOffset, on); } bool IRDaikin128::getOffTimerEnabled(void) { return GETBIT8(remote_state[kDaikin128ByteOffTimer], kDaikin128BitTimerEnabledOffset); } void IRDaikin128::setOffTimer(const uint16_t mins_since_midnight) { setTimer(remote_state + kDaikin128ByteOffTimer, mins_since_midnight); } uint16_t IRDaikin128::getOffTimer(void) { return getTimer(remote_state + kDaikin128ByteOffTimer); } void IRDaikin128::setLightToggle(const uint8_t unit) { switch (unit) { case 0: case kDaikin128BitCeiling: case kDaikin128BitWall: remote_state[kDaikin128ByteEconoLight] &= ~kDaikin128MaskLight; remote_state[kDaikin128ByteEconoLight] |= unit; break; default: setLightToggle(0); } } uint8_t IRDaikin128::getLightToggle(void) { return remote_state[kDaikin128ByteEconoLight] & kDaikin128MaskLight; } // Convert the internal state into a human readable string. String IRDaikin128::toString(void) { String result = ""; result.reserve(240); // Reserve some heap for the string to reduce fragging. result += addBoolToString(getPowerToggle(), kPowerStr + ' ' + kToggleStr, false); result += addModeToString(getMode(), kDaikin128Auto, kDaikin128Cool, kDaikin128Heat, kDaikin128Dry, kDaikin128Fan); result += addTempToString(getTemp()); result += addFanToString(getFan(), kDaikin128FanHigh, kDaikin128FanLow, kDaikin128FanAuto, kDaikin128FanQuiet, kDaikin128FanMed); result += addBoolToString(getPowerful(), kPowerfulStr); result += addBoolToString(getQuiet(), kQuietStr); result += addBoolToString(getSwingVertical(), kSwingVStr); result += addBoolToString(getSleep(), kSleepStr); result += addBoolToString(getEcono(), kEconoStr); result += addLabeledString(minsToString(getClock()), kClockStr); result += addBoolToString(getOnTimerEnabled(), kOnTimerStr); result += addLabeledString(minsToString(getOnTimer()), kOnTimerStr); result += addBoolToString(getOffTimerEnabled(), kOffTimerStr); result += addLabeledString(minsToString(getOffTimer()), kOffTimerStr); result += addIntToString(getLightToggle(), kLightStr + ' ' + kToggleStr); result += kSpaceLBraceStr; switch (getLightToggle()) { case kDaikin128BitCeiling: result += kCeilingStr; break; case kDaikin128BitWall: result += kWallStr; break; case 0: result += kOffStr; break; default: result += kUnknownStr; } result += ')'; return result; } // Convert the A/C state to it's common equivalent. stdAc::state_t IRDaikin128::toCommon(const stdAc::state_t *prev) { stdAc::state_t result; if (prev != NULL) result = *prev; result.protocol = decode_type_t::DAIKIN128; result.model = -1; // No models used. result.power ^= getPowerToggle(); result.mode = toCommonMode(getMode()); result.celsius = true; result.degrees = getTemp(); result.fanspeed = toCommonFanSpeed(getFan()); result.swingv = getSwingVertical() ? stdAc::swingv_t::kAuto : stdAc::swingv_t::kOff; result.quiet = getQuiet(); result.turbo = getPowerful(); result.econo = getEcono(); result.light ^= (getLightToggle() != 0); result.sleep = getSleep() ? 0 : -1; result.clock = getClock(); // Not supported. result.swingh = stdAc::swingh_t::kOff; result.clean = false; result.filter = false; result.beep = false; return result; } #if DECODE_DAIKIN128 // Decode the supplied Daikin 128 bit A/C message. // Args: // results: Ptr to the data to decode and where to store the decode result. // nbits: Nr. of bits to expect in the data portion. (kDaikin128Bits) // strict: Flag to indicate if we strictly adhere to the specification. // Returns: // boolean: True if it can decode it, false if it can't. // // Supported devices: // - Daikin BRC52B63 remote. // // Status: STABLE / Known Working. // // Ref: https://github.com/crankyoldgit/IRremoteESP8266/issues/827 bool IRrecv::decodeDaikin128(decode_results *results, const uint16_t nbits, const bool strict) { if (results->rawlen < 2 * (nbits + kHeader) + kFooter - 1) return false; if (nbits / 8 <= kDaikin128SectionLength) return false; // Compliance if (strict && nbits != kDaikin128Bits) return false; uint16_t offset = kStartOffset; // Leader for (uint8_t i = 0; i < 2; i++) { if (!matchMark(results->rawbuf[offset++], kDaikin128LeaderMark, kDaikinTolerance, kDaikinMarkExcess)) return false; if (!matchSpace(results->rawbuf[offset++], kDaikin128LeaderSpace, kDaikinTolerance, kDaikinMarkExcess)) return false; } const uint16_t ksectionSize[kDaikin128Sections] = { kDaikin128SectionLength, (uint16_t)(nbits / 8 - kDaikin128SectionLength)}; // Data Sections uint16_t pos = 0; for (uint8_t section = 0; section < kDaikin128Sections; section++) { uint16_t used; // Section Header (first section only) + Section Data (8 bytes) + // Section Footer (Not for first section) used = matchGeneric(results->rawbuf + offset, results->state + pos, results->rawlen - offset, ksectionSize[section] * 8, section == 0 ? kDaikin128HdrMark : 0, section == 0 ? kDaikin128HdrSpace : 0, kDaikin128BitMark, kDaikin128OneSpace, kDaikin128BitMark, kDaikin128ZeroSpace, section > 0 ? kDaikin128FooterMark : kDaikin128BitMark, kDaikin128Gap, section > 0, kDaikinTolerance, kDaikinMarkExcess, false); if (used == 0) return false; offset += used; pos += ksectionSize[section]; } // Compliance if (strict) { if (!IRDaikin128::validChecksum(results->state)) return false; } // Success results->decode_type = decode_type_t::DAIKIN128; results->bits = nbits; // No need to record the state as we stored it as we decoded it. // As we use result->state, we don't record value, address, or command as it // is a union data type. return true; } #endif // DECODE_DAIKIN128 #if SEND_DAIKIN152 // Send a Daikin 152 bit A/C message. // // Args: // data: An array of kDaikin152StateLength bytes containing the IR command. // // Supported devices: // - Daikin ARC480A5 remote. // // Status: STABLE / Known working. // // Ref: https://github.com/crankyoldgit/IRremoteESP8266/issues/873 void IRsend::sendDaikin152(const unsigned char data[], const uint16_t nbytes, const uint16_t repeat) { for (uint16_t r = 0; r <= repeat; r++) { // Leader sendGeneric(0, 0, kDaikin152BitMark, kDaikin152OneSpace, kDaikin152BitMark, kDaikin152ZeroSpace, kDaikin152BitMark, kDaikin152Gap, (uint64_t)0, kDaikin152LeaderBits, kDaikin152Freq, false, 0, kDutyDefault); // Header + Data + Footer sendGeneric(kDaikin152HdrMark, kDaikin152HdrSpace, kDaikin152BitMark, kDaikin152OneSpace, kDaikin152BitMark, kDaikin152ZeroSpace, kDaikin152BitMark, kDaikin152Gap, data, nbytes, kDaikin152Freq, false, 0, kDutyDefault); } } #endif // SEND_DAIKIN152 #if DECODE_DAIKIN152 // Decode the supplied Daikin 152 bit A/C message. // Args: // results: Ptr to the data to decode and where to store the decode result. // nbits: Nr. of bits to expect in the data portion. (kDaikin152Bits) // strict: Flag to indicate if we strictly adhere to the specification. // Returns: // boolean: True if it can decode it, false if it can't. // // Supported devices: // - Daikin ARC480A5 remote. // // Status: STABLE / Known working. // // Ref: https://github.com/crankyoldgit/IRremoteESP8266/issues/873 bool IRrecv::decodeDaikin152(decode_results *results, const uint16_t nbits, const bool strict) { if (results->rawlen < 2 * (5 + nbits + kFooter) + kHeader - 1) return false; if (nbits / 8 < kDaikin152StateLength) return false; // Compliance if (strict && nbits != kDaikin152Bits) return false; uint16_t offset = kStartOffset; uint16_t used; // Leader uint64_t leader = 0; used = matchGeneric(results->rawbuf + offset, &leader, results->rawlen - offset, kDaikin152LeaderBits, 0, 0, // No Header kDaikin152BitMark, kDaikin152OneSpace, kDaikin152BitMark, kDaikin152ZeroSpace, kDaikin152BitMark, kDaikin152Gap, // Footer gap false, _tolerance, kMarkExcess, false); if (used == 0 || leader != 0) return false; offset += used; // Header + Data + Footer used = matchGeneric(results->rawbuf + offset, results->state, results->rawlen - offset, nbits, kDaikin152HdrMark, kDaikin152HdrSpace, kDaikin152BitMark, kDaikin152OneSpace, kDaikin152BitMark, kDaikin152ZeroSpace, kDaikin152BitMark, kDaikin152Gap, true, _tolerance, kMarkExcess, false); if (used == 0) return false; // Compliance if (strict) { if (!IRDaikin152::validChecksum(results->state)) return false; } // Success results->decode_type = decode_type_t::DAIKIN152; results->bits = nbits; // No need to record the state as we stored it as we decoded it. // As we use result->state, we don't record value, address, or command as it // is a union data type. return true; } #endif // DECODE_DAIKIN152 // Class for handling Daikin 152 bit / 19 byte A/C messages. // // Code by crankyoldgit. // // Supported Remotes: Daikin ARC480A5 remote // // Ref: // https://github.com/crankyoldgit/IRremoteESP8266/issues/873 // https://github.com/ToniA/arduino-heatpumpir/blob/master/DaikinHeatpumpARC480A14IR.cpp // https://github.com/ToniA/arduino-heatpumpir/blob/master/DaikinHeatpumpARC480A14IR.h IRDaikin152::IRDaikin152(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { stateReset(); } void IRDaikin152::begin(void) { _irsend.begin(); } #if SEND_DAIKIN152 void IRDaikin152::send(const uint16_t repeat) { _irsend.sendDaikin152(getRaw(), kDaikin152StateLength, repeat); } #endif // SEND_DAIKIN152 // Verify the checksum is valid for a given state. // Args: // state: The array to verify the checksum of. // length: The size of the state. // Returns: // A boolean. bool IRDaikin152::validChecksum(uint8_t state[], const uint16_t length) { // Validate the checksum of the given state. if (length <= 1 || state[length - 1] != sumBytes(state, length - 1)) return false; else return true; } // Calculate and set the checksum values for the internal state. void IRDaikin152::checksum(void) { remote_state[kDaikin152StateLength - 1] = sumBytes( remote_state, kDaikin152StateLength - 1); } void IRDaikin152::stateReset(void) { for (uint8_t i = 3; i < kDaikin152StateLength; i++) remote_state[i] = 0x00; remote_state[0] = 0x11; remote_state[1] = 0xDA; remote_state[2] = 0x27; remote_state[15] = 0xC5; // remote_state[19] is a checksum byte, it will be set by checksum(). } uint8_t *IRDaikin152::getRaw(void) { checksum(); // Ensure correct settings before sending. return remote_state; } void IRDaikin152::setRaw(const uint8_t new_code[]) { memcpy(remote_state, new_code, kDaikin152StateLength); } void IRDaikin152::on(void) { setPower(true); } void IRDaikin152::off(void) { setPower(false); } void IRDaikin152::setPower(const bool on) { setBit(&remote_state[kDaikin152PowerByte], kDaikinBitPowerOffset, on); } bool IRDaikin152::getPower(void) { return GETBIT8(remote_state[kDaikin152PowerByte], kDaikinBitPowerOffset); } uint8_t IRDaikin152::getMode(void) { return GETBITS8(remote_state[kDaikin152ModeByte], kDaikinModeOffset, kDaikinModeSize); } void IRDaikin152::setMode(const uint8_t mode) { switch (mode) { case kDaikinFan: setTemp(kDaikin152FanTemp); // Handle special temp for fan mode. break; case kDaikinDry: setTemp(kDaikin152DryTemp); // Handle special temp for dry mode. break; case kDaikinAuto: case kDaikinCool: case kDaikinHeat: break; default: this->setMode(kDaikinAuto); return; } setBits(&remote_state[kDaikin152ModeByte], kDaikinModeOffset, kDaikinModeSize, mode); } // Convert a standard A/C mode into its native mode. uint8_t IRDaikin152::convertMode(const stdAc::opmode_t mode) { return IRDaikinESP::convertMode(mode); } // Set the temp in deg C void IRDaikin152::setTemp(const uint8_t temp) { uint8_t degrees = std::max( temp, (getMode() == kDaikinHeat) ? kDaikinMinTemp : kDaikin2MinCoolTemp); degrees = std::min(degrees, kDaikinMaxTemp); if (temp == kDaikin152FanTemp) degrees = temp; // Handle fan only temp. setBits(&remote_state[kDaikin152TempByte], kDaikinTempOffset, kDaikin152TempSize, degrees); } uint8_t IRDaikin152::getTemp(void) { return GETBITS8(remote_state[kDaikin152TempByte], kDaikinTempOffset, kDaikin152TempSize); } // Set the speed of the fan, 1-5 or kDaikinFanAuto or kDaikinFanQuiet void IRDaikin152::setFan(const uint8_t fan) { // Set the fan speed bits, leave low 4 bits alone uint8_t fanset; if (fan == kDaikinFanQuiet || fan == kDaikinFanAuto) fanset = fan; else if (fan < kDaikinFanMin || fan > kDaikinFanMax) fanset = kDaikinFanAuto; else fanset = 2 + fan; setBits(&remote_state[kDaikin152FanByte], kHighNibble, kNibbleSize, fanset); } uint8_t IRDaikin152::getFan(void) { const uint8_t fan = GETBITS8(remote_state[kDaikin152FanByte], kHighNibble, kNibbleSize); switch (fan) { case kDaikinFanAuto: case kDaikinFanQuiet: return fan; default: return fan - 2; } } // Convert a standard A/C Fan speed into its native fan speed. uint8_t IRDaikin152::convertFan(const stdAc::fanspeed_t speed) { return IRDaikinESP::convertFan(speed); } void IRDaikin152::setSwingV(const bool on) { setBits(&remote_state[kDaikin152SwingVByte], kDaikinSwingOffset, kDaikinSwingSize, on ? kDaikinSwingOn : kDaikinSwingOff); } bool IRDaikin152::getSwingV(void) { return GETBITS8(remote_state[kDaikin152SwingVByte], kDaikinSwingOffset, kDaikinSwingSize); } void IRDaikin152::setQuiet(const bool on) { setBit(&remote_state[kDaikin152QuietByte], kDaikinBitSilentOffset, on); // Powerful & Quiet mode being on are mutually exclusive. if (on) this->setPowerful(false); } bool IRDaikin152::getQuiet(void) { return GETBIT8(remote_state[kDaikin152QuietByte], kDaikinBitSilentOffset); } void IRDaikin152::setPowerful(const bool on) { setBit(&remote_state[kDaikin152PowerfulByte], kDaikinBitPowerfulOffset, on); if (on) { // Powerful, Quiet, Comfortm & Econo mode being on are mutually exclusive. this->setQuiet(false); this->setComfort(false); this->setEcono(false); } } bool IRDaikin152::getPowerful(void) { return GETBIT8(remote_state[kDaikin152PowerfulByte], kDaikinBitPowerfulOffset); } void IRDaikin152::setEcono(const bool on) { setBit(&remote_state[kDaikin152EconoByte], kDaikinBitEconoOffset, on); // Powerful & Econo mode being on are mutually exclusive. if (on) this->setPowerful(false); } bool IRDaikin152::getEcono(void) { return GETBIT8(remote_state[kDaikin152EconoByte], kDaikinBitEconoOffset); } void IRDaikin152::setSensor(const bool on) { setBit(&remote_state[kDaikin152SensorByte], kDaikin152SensorOffset, on); } bool IRDaikin152::getSensor(void) { return GETBIT8(remote_state[kDaikin152SensorByte], kDaikin152SensorOffset); } void IRDaikin152::setComfort(const bool on) { setBit(&remote_state[kDaikin152ComfortByte], kDaikin152ComfortOffset, on); if (on) { // Comfort mode is incompatible with Powerful mode. setPowerful(false); // It also sets the fan to auto and turns off swingv. setFan(kDaikinFanAuto); setSwingV(false); } } bool IRDaikin152::getComfort(void) { return GETBIT8(remote_state[kDaikin152ComfortByte], kDaikin152ComfortOffset); } // Convert the A/C state to it's common equivalent. stdAc::state_t IRDaikin152::toCommon(void) { stdAc::state_t result; result.protocol = decode_type_t::DAIKIN152; result.model = -1; // No models used. result.power = this->getPower(); result.mode = IRDaikinESP::toCommonMode(this->getMode()); result.celsius = true; result.degrees = this->getTemp(); result.fanspeed = IRDaikinESP::toCommonFanSpeed(this->getFan()); result.swingv = this->getSwingV() ? stdAc::swingv_t::kAuto : stdAc::swingv_t::kOff; result.quiet = this->getQuiet(); result.turbo = this->getPowerful(); result.econo = this->getEcono(); // Not supported. result.swingh = stdAc::swingh_t::kOff; result.clean = false; result.filter = false; result.light = false; result.beep = false; result.sleep = -1; result.clock = -1; return result; } // Convert the internal state into a human readable string. String IRDaikin152::toString(void) { String result = ""; result.reserve(180); // Reserve some heap for the string to reduce fragging. result += addBoolToString(getPower(), kPowerStr, false); result += addModeToString(getMode(), kDaikinAuto, kDaikinCool, kDaikinHeat, kDaikinDry, kDaikinFan); result += addTempToString(getTemp()); result += addFanToString(getFan(), kDaikinFanMax, kDaikinFanMin, kDaikinFanAuto, kDaikinFanQuiet, kDaikinFanMed); result += addBoolToString(getSwingV(), kSwingVStr); result += addBoolToString(getPowerful(), kPowerfulStr); result += addBoolToString(getQuiet(), kQuietStr); result += addBoolToString(getEcono(), kEconoStr); result += addBoolToString(getSensor(), kSensorStr); result += addBoolToString(getComfort(), kComfortStr); return result; }