/* TMRh20 2014 - Updated to work with optimized RF24 Arduino library */ /** * Example for efficient call-response using ack-payloads * * This example continues to make use of all the normal functionality of the radios including * the auto-ack and auto-retry features, but allows ack-payloads to be written optionlly as well. * This allows very fast call-response communication, with the responding radio never having to * switch out of Primary Receiver mode to send back a payload, but having the option to switch to * primary transmitter if wanting to initiate communication instead of respond to a commmunication. */ #include #include #include #include #include #include using namespace std; // // Hardware configuration // Configure the appropriate pins for your connections /****************** Raspberry Pi ***********************/ RF24 radio(22,0); /********** User Config *********/ // Assign a unique identifier for this node, 0 or 1. Arduino example uses radioNumber 0 by default. bool radioNumber = 1; int interruptPin = 23; /********************************/ // Radio pipe addresses for the 2 nodes to communicate. const uint8_t addresses[][6] = {"1Node","2Node"}; bool role_ping_out = 1, role_pong_back = 0, role = 0; uint8_t counter = 1; // A single byte to keep track of the data being sent back and forth uint32_t timer = 0; void intHandler(){ bool tx_ok,tx_fail,rx; radio.whatHappened(tx_ok,tx_fail,rx); if(tx_fail){ printf("Sending failed.\n\r"); } if(role == role_ping_out && tx_ok){ if(!radio.available()){ printf("Got blank response. round-trip delay: %u ms\n\r",millis()-timer); } } if(role == role_ping_out ){ while(radio.available() ){ uint8_t gotByte; radio.read( &gotByte, 1 ); printf("Got response %d, round-trip delay: %u ms\n\r",gotByte,millis()-timer); counter++; } } if ( role == role_pong_back){ if(tx_ok) { printf("Ack Payload Sent\n"); } uint8_t pipeNo, gotByte; if( radio.available(&pipeNo)){ radio.read( &gotByte, 1 ); gotByte += 1; radio.writeAckPayload(pipeNo,&gotByte, 1 ); printf("Loaded next response %d \n\r", gotByte); } } } int main(int argc, char** argv){ cout << "RPi/RF24/examples/gettingstarted_call_response\n"; radio.begin(); radio.enableAckPayload(); // Allow optional ack payloads radio.enableDynamicPayloads(); radio.printDetails(); // Dump the configuration of the rf unit for debugging /********* Role chooser ***********/ printf("\n ************ Role Setup ***********\n"); string input = ""; char myChar = {0}; cout << "Choose a role: Enter 0 for pong_back, 1 for ping_out (CTRL+C to exit)\n>"; getline(cin,input); if(input.length() == 1) { myChar = input[0]; if(myChar == '0'){ cout << "Role: Pong Back, awaiting transmission " << endl << endl; }else{ cout << "Role: Ping Out, starting transmission " << endl << endl; role = role_ping_out; } } /***********************************/ // This opens two pipes for these two nodes to communicate // back and forth. if ( !radioNumber ) { radio.openWritingPipe(addresses[0]); radio.openReadingPipe(1,addresses[1]); }else{ radio.openWritingPipe(addresses[1]); radio.openReadingPipe(1,addresses[0]); } radio.startListening(); radio.writeAckPayload(1,&counter,1); attachInterrupt(interruptPin, INT_EDGE_FALLING, intHandler); //Attach interrupt to bcm pin 23 // forever loop while (1){ /****************** Ping Out Role ***************************/ if (role == role_ping_out){ // Radio is in ping mode //uint8_t gotByte; // Initialize a variable for the incoming response radio.stopListening(); // First, stop listening so we can talk. printf("Now sending %d as payload. ",counter); // Use a simple byte counter as payload timer = millis(); // Record the current microsecond count radio.startWrite(&counter,1,false); // Send the counter variable to the other radio sleep(1); // Try again later } /****************** Pong Back Role ***************************/ } //while 1 } //main