// Copyright 2009 Ken Shirriff // Copyright 2017, 2018, 2019 David Conran // Samsung remote emulation #include "ir_Samsung.h" #include #include #ifndef ARDUINO #include #endif #include "IRrecv.h" #include "IRsend.h" #include "IRtext.h" #include "IRutils.h" // Samsung originally added from https://github.com/shirriff/Arduino-IRremote/ // Constants // Ref: // http://elektrolab.wz.cz/katalog/samsung_protocol.pdf const uint16_t kSamsungTick = 560; const uint16_t kSamsungHdrMarkTicks = 8; const uint16_t kSamsungHdrMark = kSamsungHdrMarkTicks * kSamsungTick; const uint16_t kSamsungHdrSpaceTicks = 8; const uint16_t kSamsungHdrSpace = kSamsungHdrSpaceTicks * kSamsungTick; const uint16_t kSamsungBitMarkTicks = 1; const uint16_t kSamsungBitMark = kSamsungBitMarkTicks * kSamsungTick; const uint16_t kSamsungOneSpaceTicks = 3; const uint16_t kSamsungOneSpace = kSamsungOneSpaceTicks * kSamsungTick; const uint16_t kSamsungZeroSpaceTicks = 1; const uint16_t kSamsungZeroSpace = kSamsungZeroSpaceTicks * kSamsungTick; const uint16_t kSamsungRptSpaceTicks = 4; const uint16_t kSamsungRptSpace = kSamsungRptSpaceTicks * kSamsungTick; const uint16_t kSamsungMinMessageLengthTicks = 193; const uint32_t kSamsungMinMessageLength = kSamsungMinMessageLengthTicks * kSamsungTick; const uint16_t kSamsungMinGapTicks = kSamsungMinMessageLengthTicks - (kSamsungHdrMarkTicks + kSamsungHdrSpaceTicks + kSamsungBits * (kSamsungBitMarkTicks + kSamsungOneSpaceTicks) + kSamsungBitMarkTicks); const uint32_t kSamsungMinGap = kSamsungMinGapTicks * kSamsungTick; const uint16_t kSamsungAcHdrMark = 690; const uint16_t kSamsungAcHdrSpace = 17844; const uint8_t kSamsungAcSections = 2; const uint16_t kSamsungAcSectionMark = 3086; const uint16_t kSamsungAcSectionSpace = 8864; const uint16_t kSamsungAcSectionGap = 2886; const uint16_t kSamsungAcBitMark = 586; const uint16_t kSamsungAcOneSpace = 1432; const uint16_t kSamsungAcZeroSpace = 436; using irutils::addBoolToString; using irutils::addFanToString; using irutils::addIntToString; using irutils::addLabeledString; using irutils::addModeToString; using irutils::addTempToString; using irutils::setBit; using irutils::setBits; #if SEND_SAMSUNG // Send a Samsung formatted message. // Samsung has a separate message to indicate a repeat, like NEC does. // TODO(crankyoldgit): Confirm that is actually how Samsung sends a repeat. // The refdoc doesn't indicate it is true. // // Args: // data: The message to be sent. // nbits: The bit size of the message being sent. typically kSamsungBits. // repeat: The number of times the message is to be repeated. // // Status: STABLE / Should be working. // // Ref: http://elektrolab.wz.cz/katalog/samsung_protocol.pdf void IRsend::sendSAMSUNG(const uint64_t data, const uint16_t nbits, const uint16_t repeat) { sendGeneric(kSamsungHdrMark, kSamsungHdrSpace, kSamsungBitMark, kSamsungOneSpace, kSamsungBitMark, kSamsungZeroSpace, kSamsungBitMark, kSamsungMinGap, kSamsungMinMessageLength, data, nbits, 38, true, repeat, 33); } // Construct a raw Samsung message from the supplied customer(address) & // command. // // Args: // customer: The customer code. (aka. Address) // command: The command code. // Returns: // A raw 32-bit Samsung message suitable for sendSAMSUNG(). // // Status: STABLE / Should be working. uint32_t IRsend::encodeSAMSUNG(const uint8_t customer, const uint8_t command) { uint8_t revcustomer = reverseBits(customer, sizeof(customer) * 8); uint8_t revcommand = reverseBits(command, sizeof(command) * 8); return ((revcommand ^ 0xFF) | (revcommand << 8) | (revcustomer << 16) | (revcustomer << 24)); } #endif #if DECODE_SAMSUNG // Decode the supplied Samsung message. // Samsung messages whilst 32 bits in size, only contain 16 bits of distinct // data. e.g. In transmition order: // customer_byte + customer_byte(same) + address_byte + invert(address_byte) // // Args: // results: Ptr to the data to decode and where to store the decode result. // offset: The starting index to use when attempting to decode the raw data. // Typically/Defaults to kStartOffset. // nbits: Nr. of bits to expect in the data portion. Typically kSamsungBits. // strict: Flag to indicate if we strictly adhere to the specification. // Returns: // boolean: True if it can decode it, false if it can't. // // Status: STABLE // // Note: // LG 32bit protocol appears near identical to the Samsung protocol. // They differ on their compliance criteria and how they repeat. // Ref: // http://elektrolab.wz.cz/katalog/samsung_protocol.pdf bool IRrecv::decodeSAMSUNG(decode_results *results, uint16_t offset, const uint16_t nbits, const bool strict) { if (strict && nbits != kSamsungBits) return false; // We expect Samsung to be 32 bits of message. uint64_t data = 0; // Match Header + Data + Footer if (!matchGeneric(results->rawbuf + offset, &data, results->rawlen - offset, nbits, kSamsungHdrMark, kSamsungHdrSpace, kSamsungBitMark, kSamsungOneSpace, kSamsungBitMark, kSamsungZeroSpace, kSamsungBitMark, kSamsungMinGap, true)) return false; // Compliance // According to the spec, the customer (address) code is the first 8 // transmitted bits. It's then repeated. Check for that. uint8_t address = data >> 24; if (strict && address != ((data >> 16) & 0xFF)) return false; // Spec says the command code is the 3rd block of transmitted 8-bits, // followed by the inverted command code. uint8_t command = (data & 0xFF00) >> 8; if (strict && command != ((data & 0xFF) ^ 0xFF)) return false; // Success results->bits = nbits; results->value = data; results->decode_type = SAMSUNG; // command & address need to be reversed as they are transmitted LSB first, results->command = reverseBits(command, sizeof(command) * 8); results->address = reverseBits(address, sizeof(address) * 8); return true; } #endif #if SEND_SAMSUNG36 // Send a Samsung 36-bit formatted message. // // Args: // data: The message to be sent. // nbits: The bit size of the message being sent. typically kSamsung36Bits. // repeat: The number of times the message is to be repeated. // // Status: Alpha / Experimental. // // Note: // Protocol is used by Samsung Bluray Remote: ak59-00167a // // Ref: // https://github.com/crankyoldgit/IRremoteESP8266/issues/621 void IRsend::sendSamsung36(const uint64_t data, const uint16_t nbits, const uint16_t repeat) { if (nbits < 16) return; // To small to send. for (uint16_t r = 0; r <= repeat; r++) { // Block #1 (16 bits) sendGeneric(kSamsungHdrMark, kSamsungHdrSpace, kSamsungBitMark, kSamsungOneSpace, kSamsungBitMark, kSamsungZeroSpace, kSamsungBitMark, kSamsungHdrSpace, data >> (nbits - 16), 16, 38, true, 0, kDutyDefault); // Block #2 (The rest, typically 20 bits) sendGeneric(0, 0, // No header kSamsungBitMark, kSamsungOneSpace, kSamsungBitMark, kSamsungZeroSpace, kSamsungBitMark, kSamsungMinGap, // Gap is just a guess. // Mask off the rest of the bits. data & ((1ULL << (nbits - 16)) - 1), nbits - 16, 38, true, 0, kDutyDefault); } } #endif // SEND_SAMSUNG36 #if DECODE_SAMSUNG36 // Decode the supplied Samsung36 message. // // Args: // results: Ptr to the data to decode and where to store the decode result. // offset: The starting index to use when attempting to decode the raw data. // Typically/Defaults to kStartOffset. // nbits: Nr. of bits to expect in the data portion. // Typically kSamsung36Bits. // strict: Flag to indicate if we strictly adhere to the specification. // Returns: // boolean: True if it can decode it, false if it can't. // // Status: Alpha / Experimental // // Note: // Protocol is used by Samsung Bluray Remote: ak59-00167a // // Ref: // https://github.com/crankyoldgit/IRremoteESP8266/issues/621 bool IRrecv::decodeSamsung36(decode_results *results, uint16_t offset, const uint16_t nbits, const bool strict) { if (results->rawlen < 2 * nbits + kHeader + kFooter * 2 - 1 + offset) return false; // Can't possibly be a valid Samsung message. // We need to be looking for > 16 bits to make sense. if (nbits <= 16) return false; if (strict && nbits != kSamsung36Bits) return false; // We expect nbits to be 36 bits of message. uint64_t data = 0; // Match Header + Data + Footer uint16_t used; used = matchGeneric(results->rawbuf + offset, &data, results->rawlen - offset, 16, kSamsungHdrMark, kSamsungHdrSpace, kSamsungBitMark, kSamsungOneSpace, kSamsungBitMark, kSamsungZeroSpace, kSamsungBitMark, kSamsungHdrSpace, false); if (!used) return false; offset += used; // Data (Block #2) uint64_t data2 = 0; if (!matchGeneric(results->rawbuf + offset, &data2, results->rawlen - offset, nbits - 16, 0, 0, kSamsungBitMark, kSamsungOneSpace, kSamsungBitMark, kSamsungZeroSpace, kSamsungBitMark, kSamsungMinGap, true)) return false; data <<= (nbits - 16); data += data2; // Success results->bits = nbits; results->value = data; results->decode_type = SAMSUNG36; results->command = data & ((1ULL << (nbits - 16)) - 1); results->address = data >> (nbits - 16); return true; } #endif // DECODE_SAMSUNG36 #if SEND_SAMSUNG_AC // Send a Samsung A/C message. // // Args: // data: An array of bytes containing the IR command. // nbytes: Nr. of bytes of data in the array. (>=kSamsungAcStateLength) // repeat: Nr. of times the message is to be repeated. (Default = 0). // // Status: Stable / Known working. // // Ref: // https://github.com/crankyoldgit/IRremoteESP8266/issues/505 void IRsend::sendSamsungAC(const uint8_t data[], const uint16_t nbytes, const uint16_t repeat) { if (nbytes < kSamsungAcStateLength && nbytes % kSamsungAcSectionLength) return; // Not an appropriate number of bytes to send a proper message. enableIROut(38); for (uint16_t r = 0; r <= repeat; r++) { // Header mark(kSamsungAcHdrMark); space(kSamsungAcHdrSpace); // Send in 7 byte sections. for (uint16_t offset = 0; offset < nbytes; offset += kSamsungAcSectionLength) { sendGeneric(kSamsungAcSectionMark, kSamsungAcSectionSpace, kSamsungAcBitMark, kSamsungAcOneSpace, kSamsungAcBitMark, kSamsungAcZeroSpace, kSamsungAcBitMark, kSamsungAcSectionGap, data + offset, kSamsungAcSectionLength, // 7 bytes == 56 bits 38000, false, 0, 50); // Send in LSBF order } // Complete made up guess at inter-message gap. space(kDefaultMessageGap - kSamsungAcSectionGap); } } #endif // SEND_SAMSUNG_AC IRSamsungAc::IRSamsungAc(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { this->stateReset(); } // Reset the internal state of the emulation. // Args: // forcepower: A flag indicating if force sending a special power message // with the first `send()` call. Default: true void IRSamsungAc::stateReset(const bool forcepower, const bool initialPower) { static const uint8_t kReset[kSamsungAcExtendedStateLength] = { 0x02, 0x92, 0x0F, 0x00, 0x00, 0x00, 0xF0, 0x01, 0x02, 0xAE, 0x71, 0x00, 0x15, 0xF0}; memcpy(remote_state, kReset, kSamsungAcExtendedStateLength); _forcepower = forcepower; _lastsentpowerstate = initialPower; setPower(initialPower); } void IRSamsungAc::begin(void) { _irsend.begin(); } uint8_t IRSamsungAc::calcChecksum(const uint8_t state[], const uint16_t length) { uint8_t sum = 0; // Safety check so we don't go outside the array. if (length < 7) return 255; // Shamelessly inspired by: // https://github.com/adafruit/Raw-IR-decoder-for-Arduino/pull/3/files // Count most of the '1' bits after the checksum location. sum += countBits(state[length - 7], 8); sum -= countBits(GETBITS8(state[length - 6], kLowNibble, kNibbleSize), 8); sum += countBits(GETBITS8(state[length - 5], 1, 7), 8); sum += countBits(state + length - 4, 3); return GETBITS8(28 - sum, kLowNibble, kNibbleSize); } bool IRSamsungAc::validChecksum(const uint8_t state[], const uint16_t length) { if (length < kSamsungAcStateLength) return true; // No checksum to compare with. Assume okay. uint8_t offset = 0; if (length >= kSamsungAcExtendedStateLength) offset = 7; return (GETBITS8(state[length - 6], kHighNibble, kNibbleSize) == IRSamsungAc::calcChecksum(state, length)) && (GETBITS8(state[length - (13 + offset)], kHighNibble, kNibbleSize) == IRSamsungAc::calcChecksum(state, length - (7 + offset))); } // Update the checksum for the internal state. void IRSamsungAc::checksum(uint16_t length) { if (length < 13) return; setBits(&remote_state[length - 6], kHighNibble, kNibbleSize, this->calcChecksum(remote_state, length)); setBits(&remote_state[length - 13], kHighNibble, kNibbleSize, this->calcChecksum(remote_state, length - 7)); } #if SEND_SAMSUNG_AC // Use for most function/mode/settings changes to the unit. // i.e. When the device is already running. void IRSamsungAc::send(const uint16_t repeat, const bool calcchecksum) { if (calcchecksum) this->checksum(); // Do we need to send a the special power on/off message? if (this->getPower() != _lastsentpowerstate || _forcepower) { _forcepower = false; // It will now been sent, so clear the flag if set. if (this->getPower()) { this->sendOn(repeat); } else { this->sendOff(repeat); return; // No point sending anything else if we are turning the unit off. } } _irsend.sendSamsungAC(remote_state, kSamsungAcStateLength, repeat); } // Use this for when you need to power on/off the device. // Samsung A/C requires an extended length message when you want to // change the power operating mode of the A/C unit. void IRSamsungAc::sendExtended(const uint16_t repeat, const bool calcchecksum) { if (calcchecksum) this->checksum(); uint8_t extended_state[kSamsungAcExtendedStateLength] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xD2, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; // Copy/convert the internal state to an extended state. for (uint16_t i = 0; i < kSamsungAcSectionLength; i++) extended_state[i] = remote_state[i]; for (uint16_t i = kSamsungAcSectionLength; i < kSamsungAcStateLength; i++) extended_state[i + kSamsungAcSectionLength] = remote_state[i]; // extended_state[8] seems special. This is a guess on how to calculate it. extended_state[8] = (extended_state[1] & 0x9F) | 0x40; // Send it. _irsend.sendSamsungAC(extended_state, kSamsungAcExtendedStateLength, repeat); } // Send the special extended "On" message as the library can't seem to reproduce // this message automatically. // See: https://github.com/crankyoldgit/IRremoteESP8266/issues/604#issuecomment-475020036 void IRSamsungAc::sendOn(const uint16_t repeat) { const uint8_t extended_state[21] = { 0x02, 0x92, 0x0F, 0x00, 0x00, 0x00, 0xF0, 0x01, 0xD2, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x01, 0xE2, 0xFE, 0x71, 0x80, 0x11, 0xF0}; _irsend.sendSamsungAC(extended_state, kSamsungAcExtendedStateLength, repeat); _lastsentpowerstate = true; // On } // Send the special extended "Off" message as the library can't seem to // reproduce this message automatically. // See: https://github.com/crankyoldgit/IRremoteESP8266/issues/604#issuecomment-475020036 void IRSamsungAc::sendOff(const uint16_t repeat) { const uint8_t extended_state[21] = { 0x02, 0xB2, 0x0F, 0x00, 0x00, 0x00, 0xC0, 0x01, 0xD2, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x01, 0x02, 0xFF, 0x71, 0x80, 0x11, 0xC0}; _irsend.sendSamsungAC(extended_state, kSamsungAcExtendedStateLength, repeat); _lastsentpowerstate = false; // Off } #endif // SEND_SAMSUNG_AC uint8_t *IRSamsungAc::getRaw(void) { this->checksum(); return remote_state; } void IRSamsungAc::setRaw(const uint8_t new_code[], const uint16_t length) { memcpy(remote_state, new_code, std::min(length, kSamsungAcExtendedStateLength)); // Shrink the extended state into a normal state. if (length > kSamsungAcStateLength) { for (uint8_t i = kSamsungAcStateLength; i < length; i++) remote_state[i - kSamsungAcSectionLength] = remote_state[i]; } } void IRSamsungAc::on(void) { setPower(true); } void IRSamsungAc::off(void) { setPower(false); } void IRSamsungAc::setPower(const bool on) { setBit(&remote_state[1], kSamsungAcPower1Offset, !on); // Cleared when on. setBits(&remote_state[6], kSamsungAcPower6Offset, kSamsungAcPower6Size, on ? 0b11 : 0b00); } bool IRSamsungAc::getPower(void) { return (GETBITS8(remote_state[6], kSamsungAcPower6Offset, kSamsungAcPower6Size) == 0b11) && !GETBIT8(remote_state[1], kSamsungAcPower1Offset); } // Set the temp. in deg C void IRSamsungAc::setTemp(const uint8_t temp) { uint8_t newtemp = std::max(kSamsungAcMinTemp, temp); newtemp = std::min(kSamsungAcMaxTemp, newtemp); setBits(&remote_state[11], kHighNibble, kNibbleSize, newtemp - kSamsungAcMinTemp); } // Return the set temp. in deg C uint8_t IRSamsungAc::getTemp(void) { return GETBITS8(remote_state[11], kHighNibble, kNibbleSize) + kSamsungAcMinTemp; } void IRSamsungAc::setMode(const uint8_t mode) { // If we get an unexpected mode, default to AUTO. uint8_t newmode = mode; if (newmode > kSamsungAcHeat) newmode = kSamsungAcAuto; setBits(&remote_state[12], kSamsungAcModeOffset, kModeBitsSize, newmode); // Auto mode has a special fan setting valid only in auto mode. if (newmode == kSamsungAcAuto) { this->setFan(kSamsungAcFanAuto2); } else { // Non-Auto can't have this fan setting if (this->getFan() == kSamsungAcFanAuto2) this->setFan(kSamsungAcFanAuto); // Default to something safe. } } uint8_t IRSamsungAc::getMode(void) { return GETBITS8(remote_state[12], kSamsungAcModeOffset, kModeBitsSize); } void IRSamsungAc::setFan(const uint8_t speed) { switch (speed) { case kSamsungAcFanAuto: case kSamsungAcFanLow: case kSamsungAcFanMed: case kSamsungAcFanHigh: case kSamsungAcFanTurbo: if (this->getMode() == kSamsungAcAuto) return; // Not valid in Auto mode. break; case kSamsungAcFanAuto2: // Special fan setting for when in Auto mode. if (this->getMode() != kSamsungAcAuto) return; break; default: return; } setBits(&remote_state[12], kSamsungAcFanOffest, kSamsungAcFanSize, speed); } uint8_t IRSamsungAc::getFan(void) { return GETBITS8(remote_state[12], kSamsungAcFanOffest, kSamsungAcFanSize); } bool IRSamsungAc::getSwing(void) { // TODO(Hollako): Explain why sometimes the LSB of remote_state[9] is a 1. // e.g. 0xAE or 0XAF for swing move. return GETBITS8(remote_state[9], kSamsungAcSwingOffset, kSamsungAcSwingSize) == kSamsungAcSwingMove; } void IRSamsungAc::setSwing(const bool on) { // TODO(Hollako): Explain why sometimes the LSB of remote_state[9] is a 1. // e.g. 0xAE or 0XAF for swing move. setBits(&remote_state[9], kSamsungAcSwingOffset, kSamsungAcSwingSize, on ? kSamsungAcSwingMove : kSamsungAcSwingStop); } bool IRSamsungAc::getBeep(void) { return GETBIT8(remote_state[13], kSamsungAcBeepOffset); } void IRSamsungAc::setBeep(const bool on) { setBit(&remote_state[13], kSamsungAcBeepOffset, on); } bool IRSamsungAc::getClean(void) { return GETBIT8(remote_state[10], kSamsungAcClean10Offset) && GETBIT8(remote_state[11], kSamsungAcClean11Offset); } void IRSamsungAc::setClean(const bool on) { setBit(&remote_state[10], kSamsungAcClean10Offset, on); setBit(&remote_state[11], kSamsungAcClean11Offset, on); } bool IRSamsungAc::getQuiet(void) { return !GETBIT8(remote_state[1], kSamsungAcQuiet1Offset) && GETBIT8(remote_state[5], kSamsungAcQuiet5Offset); } void IRSamsungAc::setQuiet(const bool on) { setBit(&remote_state[1], kSamsungAcQuiet1Offset, !on); // Cleared when on. setBit(&remote_state[5], kSamsungAcQuiet5Offset, on); if (on) { // Quiet mode seems to set fan speed to auto. this->setFan(kSamsungAcFanAuto); this->setPowerful(false); // Quiet 'on' is mutually exclusive to Powerful. } } bool IRSamsungAc::getPowerful(void) { return !(remote_state[8] & kSamsungAcPowerfulMask8) && (GETBITS8(remote_state[10], kSamsungAcPowerful10Offset, kSamsungAcPowerful10Size) == kSamsungAcPowerful10On) && (this->getFan() == kSamsungAcFanTurbo); } void IRSamsungAc::setPowerful(const bool on) { uint8_t off_value = this->getBreeze() ? kSamsungAcBreezeOn : 0b000; setBits(&remote_state[10], kSamsungAcPowerful10Offset, kSamsungAcPowerful10Size, on ? kSamsungAcPowerful10On : off_value); if (on) { remote_state[8] &= ~kSamsungAcPowerfulMask8; // Bit needs to be cleared. // Powerful mode sets fan speed to Turbo. this->setFan(kSamsungAcFanTurbo); this->setQuiet(false); // Powerful 'on' is mutually exclusive to Quiet. } else { remote_state[8] |= kSamsungAcPowerfulMask8; // Bit needs to be set. // Turning off Powerful mode sets fan speed to Auto if we were in Turbo mode if (this->getFan() == kSamsungAcFanTurbo) this->setFan(kSamsungAcFanAuto); } } // Ref: https://github.com/crankyoldgit/IRremoteESP8266/issues/1062 // Are the vanes closed over the fan outlet, to stop direct wind? Aka. WindFree bool IRSamsungAc::getBreeze(void) { return (GETBITS8(remote_state[10], kSamsungAcBreezeOffset, kSamsungAcBreezeSize) == kSamsungAcBreezeOn) && (this->getFan() == kSamsungAcFanAuto && !getSwing()); } // Ref: https://github.com/crankyoldgit/IRremoteESP8266/issues/1062 // Closes the vanes over the fan outlet, to stop direct wind. Aka. WindFree void IRSamsungAc::setBreeze(const bool on) { uint8_t off_value = this->getPowerful() ? kSamsungAcPowerful10On : 0b000; setBits(&remote_state[10], kSamsungAcBreezeOffset, kSamsungAcBreezeSize, on ? kSamsungAcBreezeOn : off_value); if (on) { this->setFan(kSamsungAcFanAuto); this->setSwing(false); } } bool IRSamsungAc::getDisplay(void) { return GETBIT8(remote_state[10], kSamsungAcDisplayOffset); } void IRSamsungAc::setDisplay(const bool on) { setBit(&remote_state[10], kSamsungAcDisplayOffset, on); } bool IRSamsungAc::getIon(void) { return GETBIT8(remote_state[11], kSamsungAcIonOffset); } void IRSamsungAc::setIon(const bool on) { setBit(&remote_state[11], kSamsungAcIonOffset, on); } // Convert a standard A/C mode into its native mode. uint8_t IRSamsungAc::convertMode(const stdAc::opmode_t mode) { switch (mode) { case stdAc::opmode_t::kCool: return kSamsungAcCool; case stdAc::opmode_t::kHeat: return kSamsungAcHeat; case stdAc::opmode_t::kDry: return kSamsungAcDry; case stdAc::opmode_t::kFan: return kSamsungAcFan; default: return kSamsungAcAuto; } } // Convert a standard A/C Fan speed into its native fan speed. uint8_t IRSamsungAc::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: case stdAc::fanspeed_t::kLow: return kSamsungAcFanLow; case stdAc::fanspeed_t::kMedium: return kSamsungAcFanMed; case stdAc::fanspeed_t::kHigh: return kSamsungAcFanHigh; case stdAc::fanspeed_t::kMax: return kSamsungAcFanTurbo; default: return kSamsungAcFanAuto; } } // Convert a native mode to it's common equivalent. stdAc::opmode_t IRSamsungAc::toCommonMode(const uint8_t mode) { switch (mode) { case kSamsungAcCool: return stdAc::opmode_t::kCool; case kSamsungAcHeat: return stdAc::opmode_t::kHeat; case kSamsungAcDry: return stdAc::opmode_t::kDry; case kSamsungAcFan: return stdAc::opmode_t::kFan; default: return stdAc::opmode_t::kAuto; } } // Convert a native fan speed to it's common equivalent. stdAc::fanspeed_t IRSamsungAc::toCommonFanSpeed(const uint8_t spd) { switch (spd) { case kSamsungAcFanTurbo: return stdAc::fanspeed_t::kMax; case kSamsungAcFanHigh: return stdAc::fanspeed_t::kHigh; case kSamsungAcFanMed: return stdAc::fanspeed_t::kMedium; case kSamsungAcFanLow: return stdAc::fanspeed_t::kMin; default: return stdAc::fanspeed_t::kAuto; } } // Convert the A/C state to it's common equivalent. stdAc::state_t IRSamsungAc::toCommon(void) { stdAc::state_t result; result.protocol = decode_type_t::SAMSUNG_AC; result.model = -1; // Not supported. result.power = this->getPower(); result.mode = this->toCommonMode(this->getMode()); result.celsius = true; result.degrees = this->getTemp(); result.fanspeed = this->toCommonFanSpeed(this->getFan()); result.swingv = this->getSwing() ? stdAc::swingv_t::kAuto : stdAc::swingv_t::kOff; result.quiet = this->getQuiet(); result.turbo = this->getPowerful(); result.clean = this->getClean(); result.beep = this->getBeep(); result.light = this->getDisplay(); result.filter = this->getIon(); // Not supported. result.swingh = stdAc::swingh_t::kOff; result.econo = false; result.sleep = -1; result.clock = -1; return result; } // Convert the internal state into a human readable string. String IRSamsungAc::toString(void) { String result = ""; result.reserve(115); // Reserve some heap for the string to reduce fragging. result += addBoolToString(getPower(), kPowerStr, false); result += addModeToString(getMode(), kSamsungAcAuto, kSamsungAcCool, kSamsungAcHeat, kSamsungAcDry, kSamsungAcFan); result += addTempToString(getTemp()); result += addIntToString(getFan(), kFanStr); result += kSpaceLBraceStr; switch (getFan()) { case kSamsungAcFanAuto: case kSamsungAcFanAuto2: result += kAutoStr; break; case kSamsungAcFanLow: result += kLowStr; break; case kSamsungAcFanMed: result += kMedStr; break; case kSamsungAcFanHigh: result += kHighStr; break; case kSamsungAcFanTurbo: result += kTurboStr; break; default: result += kUnknownStr; break; } result += ')'; result += addBoolToString(getSwing(), kSwingStr); result += addBoolToString(getBeep(), kBeepStr); result += addBoolToString(getClean(), kCleanStr); result += addBoolToString(getQuiet(), kQuietStr); result += addBoolToString(getPowerful(), kPowerfulStr); result += addBoolToString(getBreeze(), kBreezeStr); result += addBoolToString(getDisplay(), kLightStr); result += addBoolToString(getIon(), kIonStr); return result; } #if DECODE_SAMSUNG_AC // Decode the supplied Samsung A/C message. // // Args: // results: Ptr to the data to decode and where to store the decode result. // offset: The starting index to use when attempting to decode the raw data. // Typically/Defaults to kStartOffset. // nbits: The number of data bits to expect. Typically kSamsungAcBits // strict: Flag indicating if we should perform strict matching. // Returns: // boolean: True if it can decode it, false if it can't. // // Status: Stable / Known to be working. // // Ref: // https://github.com/crankyoldgit/IRremoteESP8266/issues/505 bool IRrecv::decodeSamsungAC(decode_results *results, uint16_t offset, const uint16_t nbits, const bool strict) { if (results->rawlen < 2 * nbits + kHeader * 3 + kFooter * 2 - 1 + offset) return false; // Can't possibly be a valid Samsung A/C message. if (nbits != kSamsungAcBits && nbits != kSamsungAcExtendedBits) return false; // Message Header if (!matchMark(results->rawbuf[offset++], kSamsungAcBitMark)) return false; if (!matchSpace(results->rawbuf[offset++], kSamsungAcHdrSpace)) return false; // Section(s) for (uint16_t pos = 0; pos <= (nbits / 8) - kSamsungAcSectionLength; pos += kSamsungAcSectionLength) { uint16_t used; // Section Header + Section Data (7 bytes) + Section Footer used = matchGeneric(results->rawbuf + offset, results->state + pos, results->rawlen - offset, kSamsungAcSectionLength * 8, kSamsungAcSectionMark, kSamsungAcSectionSpace, kSamsungAcBitMark, kSamsungAcOneSpace, kSamsungAcBitMark, kSamsungAcZeroSpace, kSamsungAcBitMark, kSamsungAcSectionGap, pos + kSamsungAcSectionLength >= nbits / 8, _tolerance, 0, false); if (used == 0) return false; offset += used; } // Compliance // Is the signature correct? DPRINTLN("DEBUG: Checking signature."); if (results->state[0] != 0x02 || results->state[2] != 0x0F) return false; if (strict) { // Is the checksum valid? if (!IRSamsungAc::validChecksum(results->state, nbits / 8)) { DPRINTLN("DEBUG: Checksum failed!"); return false; } } // Success results->decode_type = SAMSUNG_AC; results->bits = nbits; // No need to record the state as we stored it as we decoded it. // As we use result->state, we don't record value, address, or command as it // is a union data type. return true; } #endif // DECODE_SAMSUNG_AC