// Copyright 2021 David Conran (crankyoldgit) /// @file /// @brief Support for Truma protocol. /// This protocol uses mark length bit encoding. /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1440 /// @see https://docs.google.com/spreadsheets/d/1k-RHu0vSIB6IweiTZSa3Rxy3Z_qPUtqwcqot8uXVO6I/edit?usp=sharing #include "ir_Truma.h" #include #include "IRrecv.h" #include "IRsend.h" #include "IRtext.h" #include "IRutils.h" using irutils::addBoolToString; using irutils::addFanToString; using irutils::addModeToString; using irutils::addTempToString; // Constants const uint16_t kTrumaLdrMark = 20200; const uint16_t kTrumaLdrSpace = 1000; const uint16_t kTrumaHdrMark = 1800; const uint16_t kTrumaSpace = 630; const uint16_t kTrumaOneMark = 600; const uint16_t kTrumaZeroMark = 1200; const uint16_t kTrumaFooterMark = kTrumaOneMark; const uint32_t kTrumaGap = kDefaultMessageGap; // Just a guess. #if SEND_TRUMA /// Send a Truma formatted message. /// Status: STABLE / Confirmed working. /// @param[in] data The message to be sent. /// @param[in] nbits The bit size of the message being sent. /// @param[in] repeat The number of times the message is to be repeated. void IRsend::sendTruma(const uint64_t data, const uint16_t nbits, const uint16_t repeat) { for (uint16_t r = 0; r <= repeat; r++) { enableIROut(38000); mark(kTrumaLdrMark); space(kTrumaLdrSpace); sendGeneric(kTrumaHdrMark, kTrumaSpace, // Header kTrumaOneMark, kTrumaSpace, // Data kTrumaZeroMark, kTrumaSpace, kTrumaFooterMark, kTrumaGap, // Footer data, nbits, 38, false, 0, kDutyDefault); } } #endif // SEND_TRUMA #if DECODE_TRUMA /// Decode the supplied Truma message. /// Status: STABLE / Confirmed working with real device. /// @param[in,out] results Ptr to the data to decode & where to store the decode /// result. /// @param[in] offset The starting index to use when attempting to decode the /// raw data. Typically/Defaults to kStartOffset. /// @param[in] nbits The number of data bits to expect. Typically kTrumaBits. /// @param[in] strict Flag indicating if we should perform strict matching. /// @return A boolean. True if it can decode it, false if it can't. bool IRrecv::decodeTruma(decode_results *results, uint16_t offset, const uint16_t nbits, const bool strict) { if (results->rawlen < 2 * nbits + kHeader - 1 + offset) return false; // Can't possibly be a valid message. if (strict && nbits != kTrumaBits) return false; // Not strictly a message. // Leader. if (!matchMark(results->rawbuf[offset++], kTrumaLdrMark)) return false; if (!matchSpace(results->rawbuf[offset++], kTrumaLdrSpace)) return false; uint64_t data = 0; uint16_t used; used = matchGeneric(results->rawbuf + offset, &data, results->rawlen - offset, nbits, kTrumaHdrMark, kTrumaSpace, kTrumaOneMark, kTrumaSpace, kTrumaZeroMark, kTrumaSpace, kTrumaFooterMark, kTrumaGap, true, kUseDefTol, kMarkExcess, false); if (!used) return false; // Compliance if (strict && !IRTrumaAc::validChecksum(data)) return false; // Checksum. // Success results->value = data; results->decode_type = decode_type_t::TRUMA; results->bits = nbits; results->address = 0; results->command = 0; return true; } #endif // DECODE_TRUMA /// Class constructor /// @param[in] pin GPIO to be used when sending. /// @param[in] inverted Is the output signal to be inverted? /// @param[in] use_modulation Is frequency modulation to be used? IRTrumaAc::IRTrumaAc(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { stateReset(); } /// Set up hardware to be able to send a message. void IRTrumaAc::begin(void) { _irsend.begin(); } #if SEND_TRUMA /// Send the current internal state as an IR message. /// @param[in] repeat Nr. of times the message will be repeated. void IRTrumaAc::send(const uint16_t repeat) { _irsend.sendTruma(getRaw(), kTrumaBits, repeat); } #endif // SEND_TRUMA /// Calculate the checksum for a given state. /// @param[in] state The value to calc the checksum of. /// @return The calculated checksum value. uint8_t IRTrumaAc::calcChecksum(const uint64_t state) { uint8_t sum = kTrumaChecksumInit; uint64_t to_checksum = state; for (uint16_t i = 8; i < kTrumaBits; i += 8) { sum += (to_checksum & 0xFF); to_checksum >>= 8; } return sum; } /// Verify the checksum is valid for a given state. /// @param[in] state The value to verify the checksum of. /// @return true, if the state has a valid checksum. Otherwise, false. bool IRTrumaAc::validChecksum(const uint64_t state) { TrumaProtocol state_copy; state_copy.raw = state; return state_copy.Sum == calcChecksum(state); } /// Calculate & set the checksum for the current internal state of the remote. void IRTrumaAc::checksum(void) { _.Sum = calcChecksum(_.raw); } /// Reset the state of the remote to a known good state/sequence. void IRTrumaAc::stateReset(void) { setRaw(kTrumaDefaultState); } /// Get a copy of the internal state/code for this protocol. /// @return The code for this protocol based on the current internal state. uint64_t IRTrumaAc::getRaw(void) { checksum(); return _.raw; } /// Set the internal state from a valid code for this protocol. /// @param[in] state A valid code for this protocol. void IRTrumaAc::setRaw(const uint64_t state) { _.raw = state; _lastfan = _.Fan; _lastmode = _.Mode; } /// Set the requested power state of the A/C to on. void IRTrumaAc::on(void) { setPower(true); } /// Set the requested power state of the A/C to off. void IRTrumaAc::off(void) { setPower(false); } /// Change the power setting. /// @param[in] on true, the setting is on. false, the setting is off. void IRTrumaAc::setPower(const bool on) { _.PowerOff = !on; _.Mode = on ? _lastmode : kTrumaFan; // Off temporarily sets mode to Fan. } /// Get the value of the current power setting. /// @return true, the setting is on. false, the setting is off. bool IRTrumaAc::getPower(void) const { return !_.PowerOff; } /// Set the speed of the fan. /// @param[in] speed The desired setting. void IRTrumaAc::setFan(const uint8_t speed) { switch (speed) { case kTrumaFanHigh: case kTrumaFanMed: case kTrumaFanLow: _lastfan = speed; // Never allow _lastfan to be Quiet. _.Fan = speed; break; case kTrumaFanQuiet: if (_.Mode == kTrumaCool) _.Fan = kTrumaFanQuiet; // Only in Cool mode. break; default: setFan(kTrumaFanHigh); } } /// Get the current fan speed setting. /// @return The current fan speed/mode. uint8_t IRTrumaAc::getFan(void) const { return _.Fan; } /// Set the operating mode of the A/C. /// @param[in] mode The desired operating mode. void IRTrumaAc::setMode(const uint8_t mode) { switch (mode) { case kTrumaAuto: case kTrumaFan: if (getQuiet()) setFan(kTrumaFanHigh); // Can only have quiet in Cool. // FALL THRU case kTrumaCool: _.Mode = _.PowerOff ? kTrumaFan : mode; // When Off, only set Fan mode. _lastmode = mode; break; default: setMode(kTrumaAuto); } } /// Get the operating mode setting of the A/C. /// @return The current operating mode setting. uint8_t IRTrumaAc::getMode(void) const { return _.Mode; } /// Set the temperature. /// @param[in] celsius The temperature in degrees celsius. void IRTrumaAc::setTemp(const uint8_t celsius) { uint8_t temp = std::max(celsius, kTrumaMinTemp); temp = std::min(temp, kTrumaMaxTemp); _.Temp = temp - kTrumaTempOffset; } /// Get the current temperature setting. /// @return The current setting for temp. in degrees celsius. uint8_t IRTrumaAc::getTemp(void) const { return _.Temp + kTrumaTempOffset; } /// Change the Quiet setting. /// @param[in] on true, the setting is on. false, the setting is off. /// @note Quiet is only available in Cool mode. void IRTrumaAc::setQuiet(const bool on) { if (on && _.Mode == kTrumaCool) setFan(kTrumaFanQuiet); else setFan(_lastfan); } /// Get the value of the current quiet setting. /// @return true, the setting is on. false, the setting is off. bool IRTrumaAc::getQuiet(void) const { return _.Fan == kTrumaFanQuiet; } /// Convert a stdAc::opmode_t enum into its native mode. /// @param[in] mode The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRTrumaAc::convertMode(const stdAc::opmode_t mode) { switch (mode) { case stdAc::opmode_t::kCool: return kTrumaCool; case stdAc::opmode_t::kFan: return kTrumaFan; default: return kTrumaAuto; } } /// Convert a stdAc::fanspeed_t enum into it's native speed. /// @param[in] speed The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRTrumaAc::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: return kTrumaFanQuiet; case stdAc::fanspeed_t::kLow: return kTrumaFanLow; case stdAc::fanspeed_t::kMedium: return kTrumaFanMed; default: return kTrumaFanHigh; } } /// Convert a native mode into its stdAc equivalent. /// @param[in] mode The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::opmode_t IRTrumaAc::toCommonMode(const uint8_t mode) { switch (mode) { case kTrumaCool: return stdAc::opmode_t::kCool; case kTrumaFan: return stdAc::opmode_t::kFan; default: return stdAc::opmode_t::kAuto; } } /// Convert a native fan speed into its stdAc equivalent. /// @param[in] spd The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::fanspeed_t IRTrumaAc::toCommonFanSpeed(const uint8_t spd) { switch (spd) { case kTrumaFanMed: return stdAc::fanspeed_t::kMedium; case kTrumaFanLow: return stdAc::fanspeed_t::kLow; case kTrumaFanQuiet: return stdAc::fanspeed_t::kMin; default: return stdAc::fanspeed_t::kHigh; } } /// Convert the current internal state into its stdAc::state_t equivalent. /// @return The stdAc equivalent of the native settings. stdAc::state_t IRTrumaAc::toCommon(void) const { stdAc::state_t result; result.protocol = decode_type_t::TRUMA; result.model = -1; // Not supported. // Do we have enough current state info to override any previous state? // i.e. Was the class just setRaw()'ed with a short "swing" message. // This should enables us to also ignore the Swing msg's special 17C setting. result.power = getPower(); result.mode = toCommonMode(getMode()); result.celsius = true; result.degrees = getTemp(); result.fanspeed = toCommonFanSpeed(getFan()); result.quiet = getQuiet(); // Not supported. result.turbo = false; result.econo = false; result.light = false; result.filter = false; result.swingv = stdAc::swingv_t::kOff; result.swingh = stdAc::swingh_t::kOff; result.clean = false; result.beep = false; result.sleep = -1; result.clock = -1; return result; } /// Convert the current internal state into a human readable string. /// @return A human readable string. String IRTrumaAc::toString(void) const { String result = ""; result.reserve(80); result += addBoolToString(getPower(), kPowerStr, false); if (getPower()) // Only show the Operating Mode if the unit is on. result += addModeToString(_.Mode, kTrumaAuto, kTrumaCool, kTrumaAuto, kTrumaAuto, kTrumaFan); result += addTempToString(getTemp()); result += addFanToString(_.Fan, kTrumaFanHigh, kTrumaFanLow, kTrumaFanHigh, kTrumaFanQuiet, kTrumaFanMed); result += addBoolToString(getQuiet(), kQuietStr); return result; }