// Copyright 2019 ribeirodanielf // Copyright 2019 David Conran /// @file /// @brief Support for Goodweather compatible HVAC protocols. /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/697 #include "ir_Goodweather.h" #include #ifndef ARDUINO #include #endif #include "IRrecv.h" #include "IRremoteESP8266.h" #include "IRsend.h" #include "IRtext.h" #include "IRutils.h" using irutils::addBoolToString; using irutils::addIntToString; using irutils::addLabeledString; using irutils::addModeToString; using irutils::addFanToString; using irutils::addTempToString; #if SEND_GOODWEATHER /// Send a Goodweather HVAC formatted message. /// Status: BETA / Needs testing on real device. /// @param[in] data The message to be sent. /// @param[in] nbits The number of bits of message to be sent. /// @param[in] repeat The number of times the command is to be repeated. void IRsend::sendGoodweather(const uint64_t data, const uint16_t nbits, const uint16_t repeat) { if (nbits != kGoodweatherBits) return; // Wrong nr. of bits to send a proper message. // Set IR carrier frequency enableIROut(38); for (uint16_t r = 0; r <= repeat; r++) { // Header mark(kGoodweatherHdrMark); space(kGoodweatherHdrSpace); // Data for (int16_t i = 0; i < nbits; i += 8) { uint16_t chunk = (data >> i) & 0xFF; // Grab a byte at a time. chunk = (~chunk) << 8 | chunk; // Prepend a inverted copy of the byte. sendData(kGoodweatherBitMark, kGoodweatherOneSpace, kGoodweatherBitMark, kGoodweatherZeroSpace, chunk, 16, false); } // Footer mark(kGoodweatherBitMark); space(kGoodweatherHdrSpace); mark(kGoodweatherBitMark); space(kDefaultMessageGap); } } #endif // SEND_GOODWEATHER /// Class constructor /// @param[in] pin GPIO to be used when sending. /// @param[in] inverted Is the output signal to be inverted? /// @param[in] use_modulation Is frequency modulation to be used? IRGoodweatherAc::IRGoodweatherAc(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { stateReset(); } /// Reset the internal state to a fixed known good state. void IRGoodweatherAc::stateReset(void) { _.raw = kGoodweatherStateInit; } /// Set up hardware to be able to send a message. void IRGoodweatherAc::begin(void) { _irsend.begin(); } #if SEND_GOODWEATHER /// Send the current internal state as an IR message. /// @param[in] repeat Nr. of times the message will be repeated. void IRGoodweatherAc::send(const uint16_t repeat) { _irsend.sendGoodweather(getRaw(), kGoodweatherBits, repeat); } #endif // SEND_GOODWEATHER /// Get a copy of the internal state as a valid code for this protocol. /// @return A valid code for this protocol based on the current internal state. uint64_t IRGoodweatherAc::getRaw(void) { return _.raw; } /// Set the internal state from a valid code for this protocol. /// @param[in] state A valid code for this protocol. void IRGoodweatherAc::setRaw(const uint64_t state) { _.raw = state; } /// Change the power setting to On. void IRGoodweatherAc::on(void) { setPower(true); } /// Change the power setting to Off. void IRGoodweatherAc::off(void) { setPower(false); } /// Change the power setting. /// @param[in] on true, the setting is on. false, the setting is off. void IRGoodweatherAc::setPower(const bool on) { _.Command = kGoodweatherCmdPower; _.Power = on; } /// Get the value of the current power setting. /// @return true, the setting is on. false, the setting is off. bool IRGoodweatherAc::getPower(void) const { return _.Power; } /// Set the temperature. /// @param[in] temp The temperature in degrees celsius. void IRGoodweatherAc::setTemp(const uint8_t temp) { uint8_t new_temp = std::max(kGoodweatherTempMin, temp); new_temp = std::min(kGoodweatherTempMax, new_temp); if (new_temp > getTemp()) _.Command = kGoodweatherCmdUpTemp; if (new_temp < getTemp()) _.Command = kGoodweatherCmdDownTemp; _.Temp = new_temp - kGoodweatherTempMin; } /// Get the current temperature setting. /// @return The current setting for temp. in degrees celsius. uint8_t IRGoodweatherAc::getTemp(void) const { return _.Temp + kGoodweatherTempMin; } /// Set the speed of the fan. /// @param[in] speed The desired setting. void IRGoodweatherAc::setFan(const uint8_t speed) { _.Command = kGoodweatherCmdFan; switch (speed) { case kGoodweatherFanAuto: case kGoodweatherFanLow: case kGoodweatherFanMed: case kGoodweatherFanHigh: _.Fan = speed; break; default: _.Fan = kGoodweatherFanAuto; } } /// Get the current fan speed setting. /// @return The current fan speed. uint8_t IRGoodweatherAc::getFan(void) const { return _.Fan; } /// Set the operating mode of the A/C. /// @param[in] mode The desired operating mode. void IRGoodweatherAc::setMode(const uint8_t mode) { _.Command = kGoodweatherCmdMode; switch (mode) { case kGoodweatherAuto: case kGoodweatherDry: case kGoodweatherCool: case kGoodweatherFan: case kGoodweatherHeat: _.Mode = mode; break; default: _.Mode = kGoodweatherAuto; } } /// Get the operating mode setting of the A/C. /// @return The current operating mode setting. uint8_t IRGoodweatherAc::getMode(void) const { return _.Mode; } /// Set the Light (LED) Toggle setting of the A/C. /// @param[in] toggle true, the setting is on. false, the setting is off. void IRGoodweatherAc::setLight(const bool toggle) { _.Command = kGoodweatherCmdLight; _.Light = toggle; } /// Get the Light (LED) Toggle setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRGoodweatherAc::getLight(void) const { return _.Light; } /// Set the Sleep Toggle setting of the A/C. /// @param[in] toggle true, the setting is on. false, the setting is off. void IRGoodweatherAc::setSleep(const bool toggle) { _.Command = kGoodweatherCmdSleep; _.Sleep = toggle; } /// Get the Sleep Toggle setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRGoodweatherAc::getSleep(void) const { return _.Sleep; } /// Set the Turbo Toggle setting of the A/C. /// @param[in] toggle true, the setting is on. false, the setting is off. void IRGoodweatherAc::setTurbo(const bool toggle) { _.Command = kGoodweatherCmdTurbo; _.Turbo = toggle; } /// Get the Turbo Toggle setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRGoodweatherAc::getTurbo(void) const { return _.Turbo; } /// Set the Vertical Swing speed of the A/C. /// @param[in] speed The speed to set the swing to. void IRGoodweatherAc::setSwing(const uint8_t speed) { _.Command = kGoodweatherCmdSwing; switch (speed) { case kGoodweatherSwingOff: case kGoodweatherSwingSlow: case kGoodweatherSwingFast: _.Swing = speed; break; default: _.Swing = kGoodweatherSwingOff; } } /// Get the Vertical Swing speed of the A/C. /// @return The native swing speed setting. uint8_t IRGoodweatherAc::getSwing(void) const { return _.Swing; } /// Set the remote Command type/button pressed. /// @param[in] cmd The command/button that was issued/pressed. void IRGoodweatherAc::setCommand(const uint8_t cmd) { if (cmd <= kGoodweatherCmdLight) _.Command = cmd; } /// Get the Command type/button pressed from the current settings /// @return The command/button that was issued/pressed. uint8_t IRGoodweatherAc::getCommand(void) const { return _.Command; } /// Convert a stdAc::opmode_t enum into its native mode. /// @param[in] mode The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRGoodweatherAc::convertMode(const stdAc::opmode_t mode) { switch (mode) { case stdAc::opmode_t::kCool: return kGoodweatherCool; case stdAc::opmode_t::kHeat: return kGoodweatherHeat; case stdAc::opmode_t::kDry: return kGoodweatherDry; case stdAc::opmode_t::kFan: return kGoodweatherFan; default: return kGoodweatherAuto; } } /// Convert a stdAc::fanspeed_t enum into it's native speed. /// @param[in] speed The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRGoodweatherAc::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: case stdAc::fanspeed_t::kLow: return kGoodweatherFanLow; case stdAc::fanspeed_t::kMedium: return kGoodweatherFanMed; case stdAc::fanspeed_t::kHigh: case stdAc::fanspeed_t::kMax: return kGoodweatherFanHigh; default: return kGoodweatherFanAuto; } } /// Convert a stdAc::swingv_t enum into it's native setting. /// @param[in] swingv The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRGoodweatherAc::convertSwingV(const stdAc::swingv_t swingv) { switch (swingv) { case stdAc::swingv_t::kHighest: case stdAc::swingv_t::kHigh: case stdAc::swingv_t::kMiddle: return kGoodweatherSwingFast; case stdAc::swingv_t::kLow: case stdAc::swingv_t::kLowest: case stdAc::swingv_t::kAuto: return kGoodweatherSwingSlow; default: return kGoodweatherSwingOff; } } /// Convert a native mode into its stdAc equivalent. /// @param[in] mode The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::opmode_t IRGoodweatherAc::toCommonMode(const uint8_t mode) { switch (mode) { case kGoodweatherCool: return stdAc::opmode_t::kCool; case kGoodweatherHeat: return stdAc::opmode_t::kHeat; case kGoodweatherDry: return stdAc::opmode_t::kDry; case kGoodweatherFan: return stdAc::opmode_t::kFan; default: return stdAc::opmode_t::kAuto; } } /// Convert a native fan speed into its stdAc equivalent. /// @param[in] speed The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::fanspeed_t IRGoodweatherAc::toCommonFanSpeed(const uint8_t speed) { switch (speed) { case kGoodweatherFanHigh: return stdAc::fanspeed_t::kMax; case kGoodweatherFanMed: return stdAc::fanspeed_t::kMedium; case kGoodweatherFanLow: return stdAc::fanspeed_t::kMin; default: return stdAc::fanspeed_t::kAuto; } } /// Convert the current internal state into its stdAc::state_t equivalent. /// @return The stdAc equivalent of the native settings. stdAc::state_t IRGoodweatherAc::toCommon(void) const { stdAc::state_t result; result.protocol = decode_type_t::GOODWEATHER; result.power = _.Power; result.mode = toCommonMode(_.Mode); result.celsius = true; result.degrees = getTemp(); result.fanspeed = toCommonFanSpeed(_.Fan); result.swingv = (_.Swing == kGoodweatherSwingOff ? stdAc::swingv_t::kOff : stdAc::swingv_t::kAuto); result.turbo = _.Turbo; result.light = _.Light; result.sleep = _.Sleep ? 0: -1; // Not supported. result.model = -1; result.swingh = stdAc::swingh_t::kOff; result.quiet = false; result.econo = false; result.filter = false; result.clean = false; result.beep = false; result.clock = -1; return result; } /// Convert the current internal state into a human readable string. /// @return A human readable string. String IRGoodweatherAc::toString(void) const { String result = ""; result.reserve(150); // Reserve some heap for the string to reduce fragging. result += addBoolToString(_.Power, kPowerStr, false); result += addModeToString(_.Mode, kGoodweatherAuto, kGoodweatherCool, kGoodweatherHeat, kGoodweatherDry, kGoodweatherFan); result += addTempToString(getTemp()); result += addFanToString(_.Fan, kGoodweatherFanHigh, kGoodweatherFanLow, kGoodweatherFanAuto, kGoodweatherFanAuto, kGoodweatherFanMed); result += addLabeledString(_.Turbo ? kToggleStr : "-", kTurboStr); result += addLabeledString(_.Light ? kToggleStr : "-", kLightStr); result += addLabeledString(_.Sleep ? kToggleStr : "-", kSleepStr); result += addIntToString(_.Swing, kSwingStr); result += kSpaceLBraceStr; switch (_.Swing) { case kGoodweatherSwingFast: result += kFastStr; break; case kGoodweatherSwingSlow: result += kSlowStr; break; case kGoodweatherSwingOff: result += kOffStr; break; default: result += kUnknownStr; } result += ')'; result += addIntToString(_.Command, kCommandStr); result += kSpaceLBraceStr; switch (_.Command) { case kGoodweatherCmdPower: result += kPowerStr; break; case kGoodweatherCmdMode: result += kModeStr; break; case kGoodweatherCmdUpTemp: result += kTempUpStr; break; case kGoodweatherCmdDownTemp: result += kTempDownStr; break; case kGoodweatherCmdSwing: result += kSwingStr; break; case kGoodweatherCmdFan: result += kFanStr; break; case kGoodweatherCmdTimer: result += kTimerStr; break; case kGoodweatherCmdAirFlow: result += kAirFlowStr; break; case kGoodweatherCmdHold: result += kHoldStr; break; case kGoodweatherCmdSleep: result += kSleepStr; break; case kGoodweatherCmdTurbo: result += kTurboStr; break; case kGoodweatherCmdLight: result += kLightStr; break; default: result += kUnknownStr; } result += ')'; return result; } #if DECODE_GOODWEATHER /// Decode the supplied Goodweather message. /// Status: BETA / Probably works. /// @param[in,out] results Ptr to the data to decode & where to store the decode /// result. /// @param[in] offset The starting index to use when attempting to decode the /// raw data. Typically/Defaults to kStartOffset. /// @param[in] nbits The number of data bits to expect. /// @param[in] strict Flag indicating if we should perform strict matching. /// @return A boolean. True if it can decode it, false if it can't. bool IRrecv::decodeGoodweather(decode_results* results, uint16_t offset, const uint16_t nbits, const bool strict) { if (results->rawlen < 2 * (2 * nbits) + kHeader + 2 * kFooter - 1 + offset) return false; // Can't possibly be a valid Goodweather message. if (strict && nbits != kGoodweatherBits) return false; // Not strictly a Goodweather message. uint64_t dataSoFar = 0; uint16_t dataBitsSoFar = 0; match_result_t data_result; // Header if (!matchMark(results->rawbuf[offset++], kGoodweatherHdrMark)) return false; if (!matchSpace(results->rawbuf[offset++], kGoodweatherHdrSpace)) return false; // Data for (; offset <= results->rawlen - 32 && dataBitsSoFar < nbits; dataBitsSoFar += 8) { DPRINT("DEBUG: Attempting Byte #"); DPRINTLN(dataBitsSoFar / 8); // Read in a byte at a time. // Normal first. data_result = matchData(&(results->rawbuf[offset]), 8, kGoodweatherBitMark, kGoodweatherOneSpace, kGoodweatherBitMark, kGoodweatherZeroSpace, _tolerance + kGoodweatherExtraTolerance, kMarkExcess, false); if (data_result.success == false) return false; DPRINTLN("DEBUG: Normal byte read okay."); offset += data_result.used; uint8_t data = (uint8_t)data_result.data; // Then inverted. data_result = matchData(&(results->rawbuf[offset]), 8, kGoodweatherBitMark, kGoodweatherOneSpace, kGoodweatherBitMark, kGoodweatherZeroSpace, _tolerance + kGoodweatherExtraTolerance, kMarkExcess, false); if (data_result.success == false) return false; DPRINTLN("DEBUG: Inverted byte read okay."); offset += data_result.used; uint8_t inverted = (uint8_t)data_result.data; DPRINT("DEBUG: data = "); DPRINTLN((uint16_t)data); DPRINT("DEBUG: inverted = "); DPRINTLN((uint16_t)inverted); if (data != (inverted ^ 0xFF)) return false; // Data integrity failed. dataSoFar |= (uint64_t)data << dataBitsSoFar; } // Footer. if (!matchMark(results->rawbuf[offset++], kGoodweatherBitMark, _tolerance + kGoodweatherExtraTolerance)) return false; if (!matchSpace(results->rawbuf[offset++], kGoodweatherHdrSpace)) return false; if (!matchMark(results->rawbuf[offset++], kGoodweatherBitMark, _tolerance + kGoodweatherExtraTolerance)) return false; if (offset <= results->rawlen && !matchAtLeast(results->rawbuf[offset], kGoodweatherHdrSpace)) return false; // Compliance if (strict && (dataBitsSoFar != kGoodweatherBits)) return false; // Success results->decode_type = decode_type_t::GOODWEATHER; results->bits = dataBitsSoFar; results->value = dataSoFar; results->address = 0; results->command = 0; return true; } #endif // DECODE_GOODWEATHER