/* xdrv_52_3_berry_tasmota.ino - Berry scripting language, native fucnctions Copyright (C) 2021 Stephan Hadinger, Berry language by Guan Wenliang https://github.com/Skiars/berry This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_BERRY #include #include const uint32_t BERRY_MAX_LOGS = 16; // max number of print output recorded when outside of REPL, used to avoid infinite grow of logs const uint32_t BERRY_MAX_REPL_LOGS = 50; // max number of print output recorded when inside REPL // /*********************************************************************************************\ // * Return C callback from index // * // \*********************************************************************************************/ // extern "C" { // extern int32_t be_cb__get_cb(struct bvm *vm); // int32_t be_cb__get_cb(struct bvm *vm) { // int32_t argc = be_top(vm); // Get the number of arguments // if (argc >= 2 && be_isint(vm, 2)) { // int32_t idx = be_toint(vm, 2); // if (idx >= 0 && idx < ARRAY_SIZE(berry_callback_array)) { // const berry_callback_t c_ptr = berry_callback_array[idx]; // be_pushcomptr(vm, (void*) c_ptr); // be_return(vm); // } // } // be_raise(vm, kTypeError, nullptr); // } // } /*********************************************************************************************\ * Native functions mapped to Berry functions * * log(msg:string [,log_level:int]) ->nil * * import tasmota * * tasmota.get_free_heap() -> int * tasmota.publish(topic:string, payload:string[, retain:bool]) -> nil * tasmota.cmd(command:string) -> string * tasmota.get_option(index:int) -> int * tasmota.millis([delay:int]) -> int * tasmota.time_reached(timer:int) -> bool * tasmota.yield() -> nil * * tasmota.get_light([index:int = 0]) -> map * tasmota.get_power([index:int = 0]) -> bool * tasmota.set_power(idx:int, power:bool) -> bool or nil * tasmota.set_light(idx:int, values:map) -> map * \*********************************************************************************************/ extern "C" { // Berry: `tasmota.publish_result(payload:string, subtopic:string) -> nil`` // int32_t l_publish_result(struct bvm *vm); int32_t l_publish_result(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top >= 3 && be_isstring(vm, 2) && be_isstring(vm, 3)) { // 2 mandatory string arguments const char * payload = be_tostring(vm, 2); const char * subtopic = be_tostring(vm, 3); Response_P(PSTR("%s"), payload); be_pop(vm, top); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, subtopic); be_return_nil(vm); // Return } be_raise(vm, kTypeError, nullptr); } // Berry: `tasmota.publish_rulet(payload:string) -> bool`` // // Returns `true` if event was handled int32_t l_publish_rule(struct bvm *vm); int32_t l_publish_rule(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top >= 2 && be_isstring(vm, 2)) { // 1 mandatory string argument const char * payload = be_tostring(vm, 2); be_pop(vm, top); // clear the stack before calling, because of re-entrant call to Berry in a Rule bool handled = XdrvRulesProcess(0, payload); be_pushbool(vm, handled); be_return(vm); // Return } be_raise(vm, kTypeError, nullptr); } // Berry: `tasmota.cmd(command:string) -> string` // int32_t l_cmd(struct bvm *vm); int32_t l_cmd(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isstring(vm, 2)) { // only 1 argument of type string accepted const char * command = be_tostring(vm, 2); be_pop(vm, top); // clear the stack before calling, because of re-entrant call to Berry in a Rule ExecuteCommand(command, SRC_BERRY); be_return_nil(vm); // Return } be_raise(vm, kTypeError, nullptr); } // Berry: tasmota.millis([delay:int]) -> int // int32_t l_millis(struct bvm *vm); int32_t l_millis(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 0 || (top == 1 && be_isint(vm, 1))) { // only 1 argument of type string accepted uint32_t delay = 0; if (top == 1) { delay = be_toint(vm, 1); } uint32_t ret_millis = millis() + delay; be_pushint(vm, ret_millis); be_return(vm); // Return } be_raise(vm, kTypeError, nullptr); } // Berry: tasmota.micros() -> int // int32_t l_micros(struct bvm *vm); int32_t l_micros(struct bvm *vm) { be_pushint(vm, micros()); be_return(vm); // Return } // Berry: tasmota.get_option(index:int) -> int // int32_t l_getoption(struct bvm *vm); int32_t l_getoption(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isint(vm, 2)) { uint32_t opt = GetOption(be_toint(vm, 2)); be_pushint(vm, opt); be_return(vm); // Return } be_raise(vm, kTypeError, nullptr); } // Berry: tasmota.time_reached(timer:int) -> bool // int32_t l_timereached(struct bvm *vm); int32_t l_timereached(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isint(vm, 2)) { // only 1 argument of type string accepted uint32_t timer = be_toint(vm, 2); bool reached = TimeReached(timer); be_pushbool(vm, reached); be_return(vm); // Return } be_raise(vm, kTypeError, nullptr); } // Berry: tasmota.locale() -> string // int32_t l_locale(struct bvm *vm); int32_t l_locale(struct bvm *vm) { be_pushstring(vm, D_HTML_LANGUAGE); be_return(vm); } // Berry: tasmota.rtc() -> map // int32_t l_rtc(struct bvm *vm); int32_t l_rtc(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top >= 1 && be_isstring(vm, 1)) { // argument is name be_pushnil(vm); be_pushvalue(vm, 1); // (-2) nil, (-1) string -> if key matches then update (-2) } else { be_newobject(vm, "map"); // (-2) map instance, (-1) map } be_map_insert_int(vm, "utc", Rtc.utc_time); be_map_insert_int(vm, "local", Rtc.local_time); be_map_insert_int(vm, "restart", Rtc.restart_time); be_map_insert_int(vm, "timezone", Rtc.time_timezone); be_map_insert_int(vm, "config_time", Settings->cfg_timestamp); be_pop(vm, 1); be_return(vm); } // Berry: tasmota.rtc_utc() -> int // int32_t l_rtc_utc(struct bvm *vm); int32_t l_rtc_utc(struct bvm *vm) { be_pushint(vm, Rtc.utc_time); be_return(vm); } // Berry: tasmota.memory() -> map // int32_t l_memory(struct bvm *vm); int32_t l_memory(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top >= 1 && be_isstring(vm, 1)) { // argument is name be_pushnil(vm); be_pushvalue(vm, 1); // (-2) nil, (-1) string -> if key matches then update (-2) } else { be_newobject(vm, "map"); // (-2) map instance, (-1) map } be_map_insert_int(vm, "flash", ESP_getFlashChipMagicSize() / 1024); be_map_insert_int(vm, "flash_real", ESP.getFlashChipSize() / 1024); be_map_insert_int(vm, "program", ESP_getSketchSize() / 1024); be_map_insert_int(vm, "program_free", ESP_getFreeSketchSpace() / 1024); be_map_insert_int(vm, "heap_free", ESP_getFreeHeap() / 1024); be_map_insert_int(vm, "frag", ESP_getHeapFragmentation()); // give info about stack size be_map_insert_int(vm, "stack_size", SET_ESP32_STACK_SIZE / 1024); be_map_insert_real(vm, "stack_low", ((float)uxTaskGetStackHighWaterMark(nullptr)) / 1024); // values seen at last GC if (berry.last_gc_tims_ms >= 0) { be_map_insert_int(vm, "gc_time", berry.last_gc_tims_ms); } if (berry.last_gc_heap_free >= 0) { be_map_insert_int(vm, "gc_heap", berry.last_gc_heap_free / 1024); } if (UsePSRAM()) { be_map_insert_int(vm, "psram", ESP.getPsramSize() / 1024); be_map_insert_int(vm, "psram_free", ESP.getFreePsram() / 1024); } // IRAM information int32_t iram_free = (int32_t)heap_caps_get_free_size(MALLOC_CAP_32BIT) - (int32_t)heap_caps_get_free_size(MALLOC_CAP_8BIT); be_map_insert_int(vm, "iram_free", iram_free / 1024); be_pop(vm, 1); be_return(vm); } // Berry: tasmota.wifi() -> map // int32_t l_wifi(struct bvm *vm); int32_t l_wifi(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top >= 1 && be_isstring(vm, 1)) { // argument is name be_pushnil(vm); be_pushvalue(vm, 1); // (-2) nil, (-1) string -> if key matches then update (-2) } else { be_newobject(vm, "map"); // (-2) map instance, (-1) map } be_map_insert_str(vm, "mac", WiFiHelper::macAddress().c_str()); be_map_insert_bool(vm, "up", WifiHasIP()); if (Settings->flag4.network_wifi) { int32_t rssi = WiFi.RSSI(); bool show_rssi = false; #ifdef USE_IPV6 String ipv6_addr = WifiGetIPv6Str(); if (ipv6_addr != "") { be_map_insert_str(vm, "ip6", ipv6_addr.c_str()); show_rssi = true; } ipv6_addr = WifiGetIPv6LinkLocalStr(); if (ipv6_addr != "") { be_map_insert_str(vm, "ip6local", ipv6_addr.c_str()); show_rssi = true; } #endif // USE_IPV6 if (static_cast(WiFi.localIP()) != 0) { be_map_insert_str(vm, "ip", IPAddress((uint32_t)WiFi.localIP()).toString().c_str()); // quick fix for IPAddress bug show_rssi = true; } if (show_rssi) { be_map_insert_int(vm, "rssi", rssi); be_map_insert_int(vm, "quality", WifiGetRssiAsQuality(rssi)); } } be_pop(vm, 1); be_return(vm); } // Berry: tasmota.eth() -> map // int32_t l_eth(struct bvm *vm); int32_t l_eth(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top >= 1 && be_isstring(vm, 1)) { // argument is name be_pushnil(vm); be_pushvalue(vm, 1); // (-2) nil, (-1) string -> if key matches then update (-2) } else { be_newobject(vm, "map"); // (-2) map instance, (-1) map } #ifdef USE_ETHERNET be_map_insert_bool(vm, "up", EthernetHasIP()); String eth_mac = EthernetMacAddress().c_str(); if (eth_mac != "00:00:00:00:00:00") { be_map_insert_str(vm, "mac", eth_mac.c_str()); } if (static_cast(EthernetLocalIP()) != 0) { be_map_insert_str(vm, "ip", IPAddress((uint32_t)EthernetLocalIP()).toString().c_str()); // quick fix for IPAddress bug } #ifdef USE_IPV6 String ipv6_addr = EthernetGetIPv6Str(); if (ipv6_addr != "") { be_map_insert_str(vm, "ip6", ipv6_addr.c_str()); } ipv6_addr = EthernetGetIPv6LinkLocalStr(); if (ipv6_addr != "") { be_map_insert_str(vm, "ip6local", ipv6_addr.c_str()); } #endif // USE_IPV6 #else // USE_ETHERNET be_map_insert_bool(vm, "up", bfalse); #endif // USE_ETHERNET be_pop(vm, 1); be_return(vm); } // Berry: tasmota.hostname() -> string // int32_t l_hostname(struct bvm *vm); int32_t l_hostname(struct bvm *vm) { be_pushstring(vm, NetworkHostname()); be_return(vm); } static void l_push_time(bvm *vm, struct tm *t, const char *unparsed) { be_newobject(vm, "map"); be_map_insert_int(vm, "year", t->tm_year + 1900); be_map_insert_int(vm, "month", t->tm_mon + 1); be_map_insert_int(vm, "day", t->tm_mday); be_map_insert_int(vm, "hour", t->tm_hour); be_map_insert_int(vm, "min", t->tm_min); be_map_insert_int(vm, "sec", t->tm_sec); be_map_insert_int(vm, "weekday", t->tm_wday); be_map_insert_int(vm, "epoch", mktime(t)); if (unparsed) be_map_insert_str(vm, "unparsed", unparsed); be_pop(vm, 1); } int32_t l_time_dump(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isint(vm, 2)) { time_t ts = be_toint(vm, 2); struct tm *t = gmtime(&ts); l_push_time(vm, t, NULL); be_return(vm); } be_raise(vm, kTypeError, nullptr); } int32_t l_strftime(bvm *vm) { int32_t argc = be_top(vm); // Get the number of arguments if (argc == 3 && be_isstring(vm, 2) && be_isint(vm, 3)) { const char * format = be_tostring(vm, 2); time_t ts = be_toint(vm, 3); struct tm *t = gmtime(&ts); char s[64] = {0}; strftime(s, sizeof(s), format, t); be_pushstring(vm, s); be_return(vm); } be_raise(vm, kTypeError, nullptr); } int32_t l_strptime(bvm *vm) { int32_t argc = be_top(vm); // Get the number of arguments if (argc == 3 && be_isstring(vm, 2) && be_isstring(vm, 3)) { const char * input = be_tostring(vm, 2); const char * format = be_tostring(vm, 3); struct tm t = {0}; char * ret = strptime(input, format, &t); if (ret) { l_push_time(vm, &t, ret); be_return(vm); } else { be_return_nil(vm); } } be_raise(vm, kTypeError, nullptr); } // Berry: tasmota.delay(timer:int) -> nil // int32_t l_delay(struct bvm *vm); int32_t l_delay(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isint(vm, 2)) { // only 1 argument of type string accepted uint32_t timer = be_toint(vm, 2); delay(timer); be_return_nil(vm); // Return } be_raise(vm, kTypeError, nullptr); } // Berry: tasmota.delay_microseconds(timer:int) -> nil // int32_t l_delay_microseconds(struct bvm *vm); int32_t l_delay_microseconds(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isint(vm, 2)) { // only 1 argument of type string accepted uint32_t timer = be_toint(vm, 2); delayMicroseconds(timer); be_return_nil(vm); // Return } be_raise(vm, kTypeError, nullptr); } // Berry: `yield() -> nil` // ESP object int32_t l_yield(bvm *vm); int32_t l_yield(bvm *vm) { BrTimeoutYield(); be_return_nil(vm); } // Berry: tasmota.scale_uint(int * 5) -> int // int32_t l_scaleuint(struct bvm *vm); int32_t l_scaleuint(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 5 && be_isint(vm, 1) && be_isint(vm, 2) && be_isint(vm, 3) && be_isint(vm, 4) && be_isint(vm, 5)) { int32_t val = be_toint(vm, 1); int32_t from_min = be_toint(vm, 2); int32_t from_max = be_toint(vm, 3); int32_t to_min = be_toint(vm, 4); int32_t to_max = be_toint(vm, 5); int32_t scaled = changeUIntScale(val, from_min, from_max, to_min, to_max); be_pushint(vm, scaled); be_return(vm); } be_raise(vm, kTypeError, nullptr); } // Berry: tasmota.scale_int(int * 5) -> int // int32_t l_scaleint(struct bvm *vm); int32_t l_scaleint(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 5 && be_isint(vm, 1) && be_isint(vm, 2) && be_isint(vm, 3) && be_isint(vm, 4) && be_isint(vm, 5)) { int32_t val = be_toint(vm, 1); int32_t from_min = be_toint(vm, 2); int32_t from_max = be_toint(vm, 3); int32_t to_min = be_toint(vm, 4); int32_t to_max = be_toint(vm, 5); int32_t scaled = changeIntScale(val, from_min, from_max, to_min, to_max); be_pushint(vm, scaled); be_return(vm); } be_raise(vm, kTypeError, nullptr); } /* Implements the 5-order polynomial approximation to sin(x). @param i angle (with 2^15 units/circle) @return 16 bit fixed point Sine value (4.12) (ie: +4096 = +1 & -4096 = -1) The result is accurate to within +- 1 count. ie: +/-2.44e-4. */ int16_t fpsin(int16_t i) { /* Convert (signed) input to a value between 0 and 8192. (8192 is pi/2, which is the region of the curve fit). */ /* ------------------------------------------------------------------- */ i <<= 1; uint8_t c = i<0; //set carry for output pos/neg if(i == (i|0x4000)) // flip input value to corresponding value in range [0..8192) i = (1<<15) - i; i = (i & 0x7FFF) >> 1; /* ------------------------------------------------------------------- */ /* The following section implements the formula: = y * 2^-n * ( A1 - 2^(q-p)* y * 2^-n * y * 2^-n * [B1 - 2^-r * y * 2^-n * C1 * y]) * 2^(a-q) Where the constants are defined as follows: */ // enum {A1=3370945099UL, B1=2746362156UL, C1=292421UL}; // enum {n=13, p=32, q=31, r=3, a=12}; uint32_t y = (292421UL*((uint32_t)i))>>13; y = 2746362156UL - (((uint32_t)i*y)>>3); y = (uint32_t)i * (y>>13); y = (uint32_t)i * (y>>13); y = 3370945099UL - (y>>(32-31)); y = (uint32_t)i * (y>>13); y = (y+(1UL<<(31-12-1)))>>(31-12); // Rounding return c ? -y : y; } // Berry: tasmota.sine_int(int) -> int // // Input: 8192 is pi/2 // Output: -4096 is -1, 4096 is +1 // // https://www.nullhardware.com/blog/fixed-point-sine-and-cosine-for-embedded-systems/ int32_t l_sineint(struct bvm *vm); int32_t l_sineint(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 1 && be_isint(vm, 1)) { int32_t val = be_toint(vm, 1); be_pushint(vm, fpsin(val)); be_return(vm); } be_raise(vm, kTypeError, nullptr); } int32_t l_respCmnd(bvm *vm); int32_t l_respCmnd(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2) { const char *msg = be_tostring(vm, 2); Response_P("%s", msg); be_return_nil(vm); // Return nil when something goes wrong } be_raise(vm, kTypeError, nullptr); } int32_t l_respCmndStr(bvm *vm); int32_t l_respCmndStr(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2) { const char *msg = be_tostring(vm, 2); ResponseCmndChar(msg); be_return_nil(vm); // Return nil when something goes wrong } be_raise(vm, kTypeError, nullptr); } int32_t l_respCmndDone(bvm *vm); int32_t l_respCmndDone(bvm *vm) { return be_call_c_func(vm, (void*) &ResponseCmndDone, NULL, "-"); } int32_t l_respCmndError(bvm *vm); int32_t l_respCmndError(bvm *vm) { return be_call_c_func(vm, (void*) &ResponseCmndError, NULL, "-"); } int32_t l_respCmndFailed(bvm *vm); int32_t l_respCmndFailed(bvm *vm) { return be_call_c_func(vm, (void*) &ResponseCmndFailed, NULL, "-"); } // update XdrvMailbox.command with actual command int32_t l_resolveCmnd(bvm *vm); int32_t l_resolveCmnd(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isstring(vm, 2)) { const char *msg = be_tostring(vm, 2); strlcpy(XdrvMailbox.command, msg, CMDSZ); be_return_nil(vm); } be_raise(vm, kTypeError, nullptr); } // Response_append int32_t l_respAppend(bvm *vm); int32_t l_respAppend(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isstring(vm, 2)) { const char *msg = be_tostring(vm, 2); be_pop(vm, top); // avoid Error be_top is non zero message ResponseAppend_P(PSTR("%s"), msg); be_return_nil(vm); } be_raise(vm, kTypeError, nullptr); } // Find for an operator in the string // returns -1 if not found, or returns start in low 16 bits, end in high 16 bits // // Detects the following operators: `=`, `==`, `!=`, `!==`, `<`, `<=`, `>`, `>=`, `$<`, `$>`, `$!`, `$|`, `$^`, `|` int32_t tasm_find_op(bvm *vm); int32_t tasm_find_op(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments int32_t ret = -1; if (top >= 2 && be_isstring(vm, 2)) { const char *c = be_tostring(vm, 2); // new version, two phases in 1, return start in low 16 bits, end in high 16 bits int32_t idx_start = -1; int32_t idx = 0; int32_t idx_end = -1; // search for `=`, `==`, `!=`, `!==`, `<`, `<=`, `>`, `>=`, `$<`, `$>`, `$!`, `$|`, `$^`, `|` while (*c && idx_start < 0) { switch (c[0]) { case '=': case '<': case '>': idx_start = idx; if (c[1] == '=') { idx_end = idx_start + 2; } // `<=` or `>=` or `==` else { idx_end = idx_start + 1; } // `<` or `>` or `=` break; case '!': if (c[1] == '=') { // this is invalid if isolated `!` idx_start = idx; if (c[2] != '=') { idx_end = idx_start + 2; } // `!=` else { idx_end = idx_start + 3; } // `!==` } break; case '$': switch (c[1]) { case '<': case '>': case '!': case '|': case '^': idx_start = idx; // `$<`, `$>`, `$!`, `$|`, `$^` idx_end = idx_start + 2; break; default: break; } break; case '|': idx_start = idx; // `|` idx_end = idx_start + 1; break; default: break; } c++; idx++; } if (idx_start >= 0 && idx_end >= idx_start) { ret = ((idx_end & 0x7FFF) << 16) | (idx_start & 0x7FFF); } } be_pushint(vm, ret); be_return(vm); } int32_t be_Tasmota_version(void) { return Settings->version; } /* # test patterns for all-in-one version assert(tasmota._find_op("aaa#bbc==23") == 0x80007) assert(tasmota._find_op("az==23") == 0x30002) assert(tasmota._find_op("a>23") == 0x10001) assert(tasmota._find_op("aaa#bbc!23") == -1) */ // String utilities // From https://stackoverflow.com/questions/68816324/substring-exists-in-string-in-c // // changed to case-insensitive version static const char* substr_i(const char *haystack, const char *needle) { do { const char *htmp = haystack; const char *ntmp = needle; while (toupper(*htmp) == toupper(*ntmp) && *ntmp) { htmp++; ntmp++; } if (!*ntmp) { return haystack; // Beginning of match } } while (*haystack++); return NULL; } static bool startswith_i(const char *haystack, const char *needle) { const char *htmp = haystack; const char *ntmp = needle; while (toupper(*htmp) == toupper(*ntmp) && *ntmp) { htmp++; ntmp++; } return !*ntmp; } static bool endswith_i(const char *haystack, const char *needle) { size_t h_len = strlen(haystack); size_t n_len = strlen(needle); if (h_len >= n_len) { const char *htmp = haystack + h_len - n_len; const char *ntmp = needle; return (strcasecmp(htmp, ntmp) == 0); } return false; } // Apply a string operator, without allocating any object (no pressure on GC) // // `tasmota._apply_str_op(op, a, b)` // Args: // op: operator (int) // 1: `==` (equals) case insensitive // 2: `!==` or `$!` (not equals) case insensitive // 3: `$<` (starts with) case insensitive // 4: `$>` (ends with) case insensitive // 5: `$|` (contains) case insensitive // 6: `$^` (does not contain) case insensitive // a: first string // b: second string // int32_t tasm_apply_str_op(bvm *vm); int32_t tasm_apply_str_op(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments bbool ret = bfalse; if (top >= 4 && be_isint(vm, 2) && be_isstring(vm, 3) && be_isstring(vm, 4)) { int32_t op = be_toint(vm, 2); const char *a = be_tostring(vm, 3); const char *b = be_tostring(vm, 4); switch (op) { case 1: // `==` (equals) case insensitive ret = (strcasecmp(a, b) == 0); break; case 2: // `!==` or `$!` (not equals) case insensitive ret = (strcasecmp(a, b) != 0); break; case 3: // `$<` (starts with) case insensitive ret = startswith_i(a, b); break; case 4: // `$>` (ends with) case insensitive ret = endswith_i(a, b); break; case 5: // `$|` (contains) case insensitive ret = (substr_i(a, b) != NULL); break; case 6: // `$^` (does not contain) case insensitive ret = (substr_i(a, b) == NULL); break; } } be_pushbool(vm, ret); be_return(vm); } /* # unit tests # equals assert(tasmota._apply_str_op(1, "aa", "AA") == true) assert(tasmota._apply_str_op(1, "aa", "AAA") == false) assert(tasmota._apply_str_op(1, "a", "AA") == false) assert(tasmota._apply_str_op(1, "", "AA") == false) assert(tasmota._apply_str_op(1, "aa", "") == false) assert(tasmota._apply_str_op(1, "", "") == true) # not equals assert(tasmota._apply_str_op(2, "aa", "AA") == false) assert(tasmota._apply_str_op(2, "aa", "AAA") == true) assert(tasmota._apply_str_op(2, "a", "AA") == true) assert(tasmota._apply_str_op(2, "", "AA") == true) assert(tasmota._apply_str_op(2, "aa", "") == true) assert(tasmota._apply_str_op(2, "", "") == false) # starts with assert(tasmota._apply_str_op(3, "aabbcc", "AA") == true) assert(tasmota._apply_str_op(3, "aaabbcc", "AA") == true) assert(tasmota._apply_str_op(3, "abbaacc", "AA") == false) assert(tasmota._apply_str_op(3, "aabbcc", "a") == true) assert(tasmota._apply_str_op(3, "aabbcc", "") == true) assert(tasmota._apply_str_op(3, "", "") == true) assert(tasmota._apply_str_op(3, "", "a") == false) assert(tasmota._apply_str_op(3, "azeaze", "az") == true) assert(tasmota._apply_str_op(3, "azeaze", "ze") == false) # ends with assert(tasmota._apply_str_op(4, "azeaze", "az") == false) assert(tasmota._apply_str_op(4, "azeaze", "ze") == true) assert(tasmota._apply_str_op(4, "azeaze", "") == true) assert(tasmota._apply_str_op(4, "", "aa") == false) assert(tasmota._apply_str_op(4, "aa", "aa") == true) assert(tasmota._apply_str_op(4, "aabaa", "aa") == true) # contains assert(tasmota._apply_str_op(5, "azeaze", "az") == true) assert(tasmota._apply_str_op(5, "azeaze", "ze") == true) assert(tasmota._apply_str_op(5, "azeaze", "") == true) assert(tasmota._apply_str_op(5, "azeaze", "e") == true) assert(tasmota._apply_str_op(5, "azeaze", "a") == true) assert(tasmota._apply_str_op(5, "azeaze", "z") == true) assert(tasmota._apply_str_op(5, "azertyuiop", "tyui") == true) assert(tasmota._apply_str_op(5, "azertyuiop", "azr") == false) assert(tasmota._apply_str_op(5, "", "aze") == false) # not contains assert(tasmota._apply_str_op(6, "azeaze", "az") == false) assert(tasmota._apply_str_op(6, "azeaze", "ze") == false) assert(tasmota._apply_str_op(6, "azeaze", "") == false) assert(tasmota._apply_str_op(6, "azeaze", "e") == false) assert(tasmota._apply_str_op(6, "azeaze", "a") == false) assert(tasmota._apply_str_op(6, "azeaze", "z") == false) assert(tasmota._apply_str_op(6, "azertyuiop", "tyui") == false) assert(tasmota._apply_str_op(6, "azertyuiop", "azr") == true) assert(tasmota._apply_str_op(6, "", "aze") == true) */ // web append without decimal conversion int32_t l_webSend(bvm *vm); int32_t l_webSend(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isstring(vm, 2)) { const char *msg = be_tostring(vm, 2); be_pop(vm, top); // avoid Error be_top is non zero message #ifdef USE_WEBSERVER WSContentSendRaw_P( msg); #endif // USE_WEBSERVER be_return_nil(vm); // Return nil when something goes wrong } be_raise(vm, kTypeError, nullptr); } // web append with decimal conversion int32_t l_webSendDecimal(bvm *vm); int32_t l_webSendDecimal(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isstring(vm, 2)) { const char *msg = be_tostring(vm, 2); be_pop(vm, top); // avoid Error be_top is non zero message #ifdef USE_WEBSERVER WSContentSend_PD(PSTR("%s"), msg); WSContentSeparator(0); #endif // USE_WEBSERVER be_return_nil(vm); // Return nil when something goes wrong } be_raise(vm, kTypeError, nullptr); } // get webcolors int32_t l_webcolor(bvm *vm); int32_t l_webcolor(bvm *vm) { char tmp[16]; int32_t top = be_top(vm); // Get the number of arguments if (top >= 1 && be_isint(vm, 1)) { // argument is int int32_t idx = be_toint(vm, 1); if (idx >= 0 && idx < COL_LAST) { snprintf_P(tmp, sizeof(tmp), PSTR("#%06x"), WebColor(idx)); be_pushstring(vm, tmp); be_return(vm); } else { be_return_nil(vm); } } else { be_newobject(vm, "list"); for (uint32_t i = 0; i < COL_LAST; i++) { snprintf_P(tmp, sizeof(tmp), PSTR("#%06x"), WebColor(i)); be_pushstring(vm, tmp); be_data_push(vm, -2); be_pop(vm, 1); } be_pop(vm, 1); be_return(vm); } } // get power int32_t l_getpower(bvm *vm); int32_t l_getpower(bvm *vm) { power_t pow = TasmotaGlobal.power; int32_t top = be_top(vm); // Get the number of arguments if (top >= 2 && be_isint(vm, 2)) { int32_t idx = be_toint(vm, 2); if (idx >= 0 && idx < TasmotaGlobal.devices_present) { be_pushbool(vm, bitRead(pow, idx)); be_return(vm); } else { be_return_nil(vm); } } else { // no parameter, return an array of all values be_newobject(vm, "list"); for (uint32_t i = 0; i < TasmotaGlobal.devices_present; i++) { be_pushbool(vm, bitRead(pow, i)); be_data_push(vm, -2); be_pop(vm, 1); } be_pop(vm, 1); be_return(vm); // Return } } int32_t l_setpower(bvm *vm); int32_t l_setpower(bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 3 && be_isint(vm, 2) && be_isbool(vm, 3)) { int32_t idx = be_toint(vm, 2); bool power = be_tobool(vm, 3); if ((idx >= 0) && (idx < TasmotaGlobal.devices_present)) { be_pop(vm, top); // avoid Error be_top is non zero message ExecuteCommandPower(idx + 1, (power) ? POWER_ON : POWER_OFF, SRC_BERRY); be_pushbool(vm, power); be_return(vm); // Return } else { be_return_nil(vm); } } be_raise(vm, kTypeError, nullptr); } // get power int32_t l_getswitch(bvm *vm); int32_t l_getswitch(bvm *vm) { be_newobject(vm, "list"); for (uint32_t i = 0; i < MAX_SWITCHES_SET; i++) { if (SwitchUsed(i)) { be_pushbool(vm, SwitchGetState(i) == PRESSED); be_data_push(vm, -2); be_pop(vm, 1); } } be_pop(vm, 1); be_return(vm); // Return } #ifdef USE_I2C // I2C specific // Berry: `i2c_enabled(index:int) -> bool` is I2C device enabled int32_t l_i2cenabled(struct bvm *vm); int32_t l_i2cenabled(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 2 && be_isint(vm, 2)) { int32_t index = be_toint(vm, 2); be_pop(vm, top); // avoid Error be_top is non zero message bool enabled = I2cEnabled(index); be_pushbool(vm, enabled); be_return(vm); // Return } be_raise(vm, kTypeError, nullptr); } #else // USE_I2C int32_t l_i2cenabled(struct bvm *vm) __attribute__ ((weak, alias ("b_wire_i2cmissing"))); #endif // USE_I2C } /*********************************************************************************************\ * Native functions mapped to Berry functions * * log(msg:string [,log_level:int]) ->nil * \*********************************************************************************************/ extern "C" { // Berry: `loglevel() -> int` // or // Berry: `loglevel(int) -> bool` // return the highest log level currently in place int32_t l_loglevel(struct bvm *vm); int32_t l_loglevel(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments uint32_t highest_loglevel = HighestLogLevel(); if (top >= 2 && be_isint(vm, 2)) { int32_t log_level = be_toint(vm, 2); be_pushbool(vm, log_level <= highest_loglevel); } else { be_pushint(vm, HighestLogLevel()); } be_return(vm); } // Berry: `log(msg:string [,log_level:int]) ->nil` // Logs the string at LOG_LEVEL_INFO (loglevel=2) // We allow this function to be called as a method or a direct function // if the first argument is an instance, we remove it int32_t l_logInfo(struct bvm *vm); int32_t l_logInfo(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top >= 2 && be_isstring(vm, 2)) { // only 1 argument of type string accepted const char * msg = be_tostring(vm, 2); uint32_t log_level = LOG_LEVEL_INFO; if (top >= 3 && be_isint(vm, 3)) { log_level = be_toint(vm, 3); if (log_level > LOG_LEVEL_DEBUG_MORE) { log_level = LOG_LEVEL_DEBUG_MORE; } } AddLog(log_level, PSTR("%s"), msg); be_return(vm); // Return } be_return_nil(vm); // Return nil when something goes wrong } // Berry: `getFreeHeap() -> int` // ESP object int32_t l_getFreeHeap(bvm *vm); int32_t l_getFreeHeap(bvm *vm) { be_pushint(vm, ESP.getFreeHeap()); be_return(vm); } // Berry: `arch() -> string` // ESP object int32_t l_arch(bvm *vm); int32_t l_arch(bvm *vm) { be_pushstring(vm, ESP32_ARCH); be_return(vm); } // Berry: `save(file:string, f:closure) -> bool` int32_t l_save(struct bvm *vm); int32_t l_save(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments if (top == 3 && be_isstring(vm, 2) && be_isclosure(vm, 3)) { // only 1 argument of type string accepted const char *fname = be_tostring(vm, 2); int32_t ret = be_savecode(vm, fname); be_pushint(vm, ret); be_return(vm); // Return } be_raise(vm, kTypeError, nullptr); } } /*********************************************************************************************\ * Native functions mapped to Berry functions * * read_sensors(show_sensor:bool) -> string * \*********************************************************************************************/ extern "C" { int32_t l_read_sensors(struct bvm *vm); int32_t l_read_sensors(struct bvm *vm) { int32_t top = be_top(vm); // Get the number of arguments bool sensor_display = false; // don't trigger a display by default if (top >= 2) { sensor_display = be_tobool(vm, 2); } be_pop(vm, top); // clear stack to avoid `Error be_top is non zero=1` errors ResponseClear(); if (MqttShowSensor(sensor_display)) { // return string be_pushstring(vm, ResponseData()); be_return(vm); } else { be_return_nil(vm); } } } /*********************************************************************************************\ * Tasmota Log Reader * \*********************************************************************************************/ extern "C" { uint32_t* tlr_init(void) { uint32_t* idx = new uint32_t(); *idx = 0; return idx; } char* tlr_get_log(uint32_t* idx, int32_t log_level) { // bool GetLog(uint32_t req_loglevel, uint32_t* index_p, char** entry_pp, size_t* len_p) { if (log_level < 0 || log_level > 4) { log_level = 2; } // default to LOG_LEVEL_INFO char* line; size_t len; if (GetLog(log_level, idx, &line, &len) && len > 0) { char* s = (char*) malloc(len+1); memmove(s, line, len); s[len] = 0; return s; // caller will free() } else { return NULL; } } } /*********************************************************************************************\ * Logging functions * \*********************************************************************************************/ // called as a replacement to Berry `print()` void berry_log(const char * berry_buf); void berry_log(const char * berry_buf) { const char * pre_delimiter = nullptr; // do we need to prepend a delimiter if no REPL command size_t max_logs = berry.repl_active ? BERRY_MAX_REPL_LOGS : BERRY_MAX_LOGS; if (berry.log.log.length() == 0) { pre_delimiter = BERRY_CONSOLE_CMD_DELIMITER; } if (berry.log.log.length() >= max_logs) { berry.log.log.remove(berry.log.log.head()); } berry.log.addString(berry_buf, pre_delimiter, "\n"); AddLog(LOG_LEVEL_INFO, PSTR("%s"), berry_buf); } const uint16_t LOGSZ = 128; // Max number of characters in log line extern "C" { void serial_debug(const char * berry_buf, ...) { // To save stack space support logging for max text length of 128 characters char log_data[LOGSZ]; va_list arg; va_start(arg, berry_buf); uint32_t len = ext_vsnprintf_P(log_data, LOGSZ-3, berry_buf, arg); va_end(arg); if (len+3 > LOGSZ) { strcat(log_data, "..."); } // Actual data is more TasConsole.printf(log_data); #ifdef USE_SERIAL_BRIDGE SerialBridgeWrite(log_data, strlen(log_data)); #endif // USE_SERIAL_BRIDGE #ifdef USE_TELNET TelnetWrite(log_data, strlen(log_data)); #endif // USE_TELNET } void berry_log_C(const char * berry_buf, ...) { // To save stack space support logging for max text length of 128 characters char log_data[LOGSZ]; va_list arg; va_start(arg, berry_buf); uint32_t len = ext_vsnprintf_P(log_data, LOGSZ-3, berry_buf, arg); va_end(arg); if (len+3 > LOGSZ) { strcat(log_data, "..."); } // Actual data is more berry_log(log_data); } void tasmota_log_C(int32_t loglevel, const char * berry_buf, ...) { va_list arg; va_start(arg, berry_buf); char* log_data = ext_vsnprintf_malloc_P(berry_buf, arg); va_end(arg); if (log_data == nullptr) { return; } AddLogData(loglevel, log_data); free(log_data); } } #endif // USE_BERRY