// Copyright 2017 Ville Skyttä (scop) // Copyright 2017, 2018 David Conran /// @file /// @brief Support for Gree A/C protocols. /// @see https://github.com/ToniA/arduino-heatpumpir/blob/master/GreeHeatpumpIR.h #include "ir_Gree.h" #include #include #ifndef ARDUINO #include #endif #include "IRrecv.h" #include "IRremoteESP8266.h" #include "IRsend.h" #include "IRtext.h" #include "IRutils.h" #include "ir_Kelvinator.h" // Constants const uint16_t kGreeHdrMark = 9000; const uint16_t kGreeHdrSpace = 4500; ///< See #684 & real example in unit tests const uint16_t kGreeBitMark = 620; const uint16_t kGreeOneSpace = 1600; const uint16_t kGreeZeroSpace = 540; const uint16_t kGreeMsgSpace = 19000; const uint8_t kGreeBlockFooter = 0b010; const uint8_t kGreeBlockFooterBits = 3; using irutils::addBoolToString; using irutils::addIntToString; using irutils::addLabeledString; using irutils::addModeToString; using irutils::addModelToString; using irutils::addFanToString; using irutils::addTempToString; using irutils::minsToString; #if SEND_GREE /// Send a Gree Heat Pump formatted message. /// Status: STABLE / Working. /// @param[in] data The message to be sent. /// @param[in] nbytes The number of bytes of message to be sent. /// @param[in] repeat The number of times the command is to be repeated. void IRsend::sendGree(const uint8_t data[], const uint16_t nbytes, const uint16_t repeat) { if (nbytes < kGreeStateLength) return; // Not enough bytes to send a proper message. for (uint16_t r = 0; r <= repeat; r++) { // Block #1 sendGeneric(kGreeHdrMark, kGreeHdrSpace, kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace, 0, 0, // No Footer. data, 4, 38, false, 0, 50); // Footer #1 sendGeneric(0, 0, // No Header kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace, kGreeBitMark, kGreeMsgSpace, 0b010, 3, 38, false, 0, 50); // Block #2 sendGeneric(0, 0, // No Header for Block #2 kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace, kGreeBitMark, kGreeMsgSpace, data + 4, nbytes - 4, 38, false, 0, 50); } } /// Send a Gree Heat Pump formatted message. /// Status: STABLE / Working. /// @param[in] data The message to be sent. /// @param[in] nbits The number of bits of message to be sent. /// @param[in] repeat The number of times the command is to be repeated. void IRsend::sendGree(const uint64_t data, const uint16_t nbits, const uint16_t repeat) { if (nbits != kGreeBits) return; // Wrong nr. of bits to send a proper message. // Set IR carrier frequency enableIROut(38); for (uint16_t r = 0; r <= repeat; r++) { // Header mark(kGreeHdrMark); space(kGreeHdrSpace); // Data for (int16_t i = 8; i <= nbits; i += 8) { sendData(kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace, (data >> (nbits - i)) & 0xFF, 8, false); if (i == nbits / 2) { // Send the mid-message Footer. sendData(kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace, 0b010, 3); mark(kGreeBitMark); space(kGreeMsgSpace); } } // Footer mark(kGreeBitMark); space(kGreeMsgSpace); } } #endif // SEND_GREE /// Class constructor /// @param[in] pin GPIO to be used when sending. /// @param[in] model The enum of the model to be emulated. /// @param[in] inverted Is the output signal to be inverted? /// @param[in] use_modulation Is frequency modulation to be used? IRGreeAC::IRGreeAC(const uint16_t pin, const gree_ac_remote_model_t model, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { stateReset(); setModel(model); } /// Reset the internal state to a fixed known good state. void IRGreeAC::stateReset(void) { // This resets to a known-good state to Power Off, Fan Auto, Mode Auto, 25C. std::memset(_.remote_state, 0, sizeof _.remote_state); _.Temp = 9; // _.remote_state[1] = 0x09; _.Light = true; // _.remote_state[2] = 0x20; _.unknown1 = 5; // _.remote_state[3] = 0x50; _.unknown2 = 4; // _.remote_state[5] = 0x20; } /// Fix up the internal state so it is correct. /// @note Internal use only. void IRGreeAC::fixup(void) { setPower(getPower()); // Redo the power bits as they differ between models. checksum(); // Calculate the checksums } /// Set up hardware to be able to send a message. void IRGreeAC::begin(void) { _irsend.begin(); } #if SEND_GREE /// Send the current internal state as an IR message. /// @param[in] repeat Nr. of times the message will be repeated. void IRGreeAC::send(const uint16_t repeat) { _irsend.sendGree(getRaw(), kGreeStateLength, repeat); } #endif // SEND_GREE /// Get a PTR to the internal state/code for this protocol. /// @return PTR to a code for this protocol based on the current internal state. uint8_t* IRGreeAC::getRaw(void) { fixup(); // Ensure correct settings before sending. return _.remote_state; } /// Set the internal state from a valid code for this protocol. /// @param[in] new_code A valid code for this protocol. void IRGreeAC::setRaw(const uint8_t new_code[]) { std::memcpy(_.remote_state, new_code, kGreeStateLength); // We can only detect the difference between models when the power is on. if (_.Power) { if (_.ModelA) _model = gree_ac_remote_model_t::YAW1F; else _model = gree_ac_remote_model_t::YBOFB; } } /// Calculate and set the checksum values for the internal state. /// @param[in] length The size/length of the state array to fix the checksum of. void IRGreeAC::checksum(const uint16_t length) { // Gree uses the same checksum alg. as Kelvinator's block checksum. _.Sum = IRKelvinatorAC::calcBlockChecksum(_.remote_state, length); } /// Verify the checksum is valid for a given state. /// @param[in] state The array to verify the checksum of. /// @param[in] length The length of the state array. /// @return true, if the state has a valid checksum. Otherwise, false. bool IRGreeAC::validChecksum(const uint8_t state[], const uint16_t length) { // Top 4 bits of the last byte in the state is the state's checksum. return GETBITS8(state[length - 1], kHighNibble, kNibbleSize) == IRKelvinatorAC::calcBlockChecksum(state, length); } /// Set the model of the A/C to emulate. /// @param[in] model The enum of the appropriate model. void IRGreeAC::setModel(const gree_ac_remote_model_t model) { switch (model) { case gree_ac_remote_model_t::YAW1F: case gree_ac_remote_model_t::YBOFB: _model = model; break; default: _model = gree_ac_remote_model_t::YAW1F; } } /// Get/Detect the model of the A/C. /// @return The enum of the compatible model. gree_ac_remote_model_t IRGreeAC::getModel(void) const { return _model; } /// Change the power setting to On. void IRGreeAC::on(void) { setPower(true); } /// Change the power setting to Off. void IRGreeAC::off(void) { setPower(false); } /// Change the power setting. /// @param[in] on true, the setting is on. false, the setting is off. /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/814 void IRGreeAC::setPower(const bool on) { _.Power = on; // May not be needed. See #814 _.ModelA = (on && _model == gree_ac_remote_model_t::YAW1F); } /// Get the value of the current power setting. /// @return true, the setting is on. false, the setting is off. /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/814 bool IRGreeAC::getPower(void) const { // See #814. Not checking/requiring: (_.ModelA) return _.Power; } /// Set the default temperature units to use. /// @param[in] on Use Fahrenheit as the units. /// true is Fahrenheit, false is Celsius. void IRGreeAC::setUseFahrenheit(const bool on) { _.UseFahrenheit = on; } /// Get the default temperature units in use. /// @return true is Fahrenheit, false is Celsius. bool IRGreeAC::getUseFahrenheit(void) const { return _.UseFahrenheit; } /// Set the temp. in degrees /// @param[in] temp Desired temperature in Degrees. /// @param[in] fahrenheit Use units of Fahrenheit and set that as units used. /// false is Celsius (Default), true is Fahrenheit. /// @note The unit actually works in Celsius with a special optional /// "extra degree" when sending Fahrenheit. void IRGreeAC::setTemp(const uint8_t temp, const bool fahrenheit) { float safecelsius = temp; if (fahrenheit) // Covert to F, and add a fudge factor to round to the expected degree. // Why 0.6 you ask?! Because it works. Ya'd thing 0.5 would be good for // rounding, but Noooooo! safecelsius = fahrenheitToCelsius(temp + 0.6); setUseFahrenheit(fahrenheit); // Set the correct Temp units. // Make sure we have desired temp in the correct range. safecelsius = std::max(static_cast(kGreeMinTempC), safecelsius); safecelsius = std::min(static_cast(kGreeMaxTempC), safecelsius); // An operating mode of Auto locks the temp to a specific value. Do so. if (_.Mode == kGreeAuto) safecelsius = 25; // Set the "main" Celsius degrees. _.Temp = safecelsius - kGreeMinTempC; // Deal with the extra degree fahrenheit difference. _.TempExtraDegreeF = (static_cast(safecelsius * 2) & 1); } /// Get the set temperature /// @return The temperature in degrees in the current units (C/F) set. uint8_t IRGreeAC::getTemp(void) const { uint8_t deg = kGreeMinTempC + _.Temp; if (_.UseFahrenheit) { deg = celsiusToFahrenheit(deg); // Retrieve the "extra" fahrenheit from elsewhere in the code. if (_.TempExtraDegreeF) deg++; deg = std::max(deg, kGreeMinTempF); // Cover the fact that 61F is < 16C } return deg; } /// Set the speed of the fan. /// @param[in] speed The desired setting. 0 is auto, 1-3 is the speed. void IRGreeAC::setFan(const uint8_t speed) { uint8_t fan = std::min(kGreeFanMax, speed); // Bounds check if (_.Mode == kGreeDry) fan = 1; // DRY mode is always locked to fan 1. // Set the basic fan values. _.Fan = fan; } /// Get the current fan speed setting. /// @return The current fan speed. uint8_t IRGreeAC::getFan(void) const { return _.Fan; } /// Set the operating mode of the A/C. /// @param[in] new_mode The desired operating mode. void IRGreeAC::setMode(const uint8_t new_mode) { uint8_t mode = new_mode; switch (mode) { // AUTO is locked to 25C case kGreeAuto: setTemp(25); break; // DRY always sets the fan to 1. case kGreeDry: setFan(1); break; case kGreeCool: case kGreeFan: case kGreeHeat: break; // If we get an unexpected mode, default to AUTO. default: mode = kGreeAuto; } _.Mode = mode; } /// Get the operating mode setting of the A/C. /// @return The current operating mode setting. uint8_t IRGreeAC::getMode(void) const { return _.Mode; } /// Set the Light (LED) setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRGreeAC::setLight(const bool on) { _.Light = on; } /// Get the Light (LED) setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRGreeAC::getLight(void) const { return _.Light; } /// Set the IFeel setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRGreeAC::setIFeel(const bool on) { _.IFeel = on; } /// Get the IFeel setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRGreeAC::getIFeel(void) const { return _.IFeel; } /// Set the Wifi (enabled) setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRGreeAC::setWiFi(const bool on) { _.WiFi = on; } /// Get the Wifi (enabled) setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRGreeAC::getWiFi(void) const { return _.WiFi; } /// Set the XFan (Mould) setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRGreeAC::setXFan(const bool on) { _.Xfan = on; } /// Get the XFan (Mould) setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRGreeAC::getXFan(void) const { return _.Xfan; } /// Set the Sleep setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRGreeAC::setSleep(const bool on) { _.Sleep = on; } /// Get the Sleep setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRGreeAC::getSleep(void) const { return _.Sleep; } /// Set the Turbo setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRGreeAC::setTurbo(const bool on) { _.Turbo = on; } /// Get the Turbo setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRGreeAC::getTurbo(void) const { return _.Turbo; } /// Set the Vertical Swing mode of the A/C. /// @param[in] automatic Do we use the automatic setting? /// @param[in] position The position/mode to set the vanes to. void IRGreeAC::setSwingVertical(const bool automatic, const uint8_t position) { _.SwingAuto = automatic; uint8_t new_position = position; if (!automatic) { switch (position) { case kGreeSwingUp: case kGreeSwingMiddleUp: case kGreeSwingMiddle: case kGreeSwingMiddleDown: case kGreeSwingDown: break; default: new_position = kGreeSwingLastPos; } } else { switch (position) { case kGreeSwingAuto: case kGreeSwingDownAuto: case kGreeSwingMiddleAuto: case kGreeSwingUpAuto: break; default: new_position = kGreeSwingAuto; } } _.Swing = new_position; } /// Get the Vertical Swing Automatic mode setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRGreeAC::getSwingVerticalAuto(void) const { return _.SwingAuto; } /// Get the Vertical Swing position setting of the A/C. /// @return The native position/mode. uint8_t IRGreeAC::getSwingVerticalPosition(void) const { return _.Swing; } /// Set the timer enable setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRGreeAC::setTimerEnabled(const bool on) { _.TimerEnabled = on; } /// Get the timer enabled setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRGreeAC::getTimerEnabled(void) const { return _.TimerEnabled; } /// Get the timer time value from the A/C. /// @return The number of minutes the timer is set for. uint16_t IRGreeAC::getTimer(void) const { uint16_t hrs = irutils::bcdToUint8((_.TimerTensHr << kNibbleSize) | _.TimerHours); return hrs * 60 + (_.TimerHalfHr ? 30 : 0); } /// Set the A/C's timer to turn off in X many minutes. /// @param[in] minutes The number of minutes the timer should be set for. /// @note Stores time internally in 30 min units. /// e.g. 5 mins means 0 (& Off), 95 mins is 90 mins (& On). Max is 24 hours. void IRGreeAC::setTimer(const uint16_t minutes) { uint16_t mins = std::min(kGreeTimerMax, minutes); // Bounds check. setTimerEnabled(mins >= 30); // Timer is enabled when >= 30 mins. uint8_t hours = mins / 60; // Set the half hour bit. _.TimerHalfHr = (mins % 60) >= 30; // Set the "tens" digit of hours. _.TimerTensHr = hours / 10; // Set the "units" digit of hours. _.TimerHours = hours % 10; } /// Set temperature display mode. /// i.e. Internal, External temperature sensing. /// @param[in] mode The desired temp source to display. /// @note In order for the A/C unit properly accept these settings. You must /// cycle (send) in the following order: /// kGreeDisplayTempOff(0) -> kGreeDisplayTempSet(1) -> /// kGreeDisplayTempInside(2) ->kGreeDisplayTempOutside(3) -> /// kGreeDisplayTempOff(0). /// The unit will no behave correctly if the changes of this setting are sent /// out of order. /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1118#issuecomment-628242152 void IRGreeAC::setDisplayTempSource(const uint8_t mode) { _.DisplayTemp = mode; } /// Get the temperature display mode. /// i.e. Internal, External temperature sensing. /// @return The current temp source being displayed. uint8_t IRGreeAC::getDisplayTempSource(void) const { return _.DisplayTemp; } /// Convert a stdAc::opmode_t enum into its native mode. /// @param[in] mode The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRGreeAC::convertMode(const stdAc::opmode_t mode) { switch (mode) { case stdAc::opmode_t::kCool: return kGreeCool; case stdAc::opmode_t::kHeat: return kGreeHeat; case stdAc::opmode_t::kDry: return kGreeDry; case stdAc::opmode_t::kFan: return kGreeFan; default: return kGreeAuto; } } /// Convert a stdAc::fanspeed_t enum into it's native speed. /// @param[in] speed The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRGreeAC::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: return kGreeFanMin; case stdAc::fanspeed_t::kLow: case stdAc::fanspeed_t::kMedium: return kGreeFanMax - 1; case stdAc::fanspeed_t::kHigh: case stdAc::fanspeed_t::kMax: return kGreeFanMax; default: return kGreeFanAuto; } } /// Convert a stdAc::swingv_t enum into it's native setting. /// @param[in] swingv The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRGreeAC::convertSwingV(const stdAc::swingv_t swingv) { switch (swingv) { case stdAc::swingv_t::kHighest: return kGreeSwingUp; case stdAc::swingv_t::kHigh: return kGreeSwingMiddleUp; case stdAc::swingv_t::kMiddle: return kGreeSwingMiddle; case stdAc::swingv_t::kLow: return kGreeSwingMiddleDown; case stdAc::swingv_t::kLowest: return kGreeSwingDown; default: return kGreeSwingAuto; } } /// Convert a native mode into its stdAc equivalent. /// @param[in] mode The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::opmode_t IRGreeAC::toCommonMode(const uint8_t mode) { switch (mode) { case kGreeCool: return stdAc::opmode_t::kCool; case kGreeHeat: return stdAc::opmode_t::kHeat; case kGreeDry: return stdAc::opmode_t::kDry; case kGreeFan: return stdAc::opmode_t::kFan; default: return stdAc::opmode_t::kAuto; } } /// Convert a native fan speed into its stdAc equivalent. /// @param[in] speed The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::fanspeed_t IRGreeAC::toCommonFanSpeed(const uint8_t speed) { switch (speed) { case kGreeFanMax: return stdAc::fanspeed_t::kMax; case kGreeFanMax - 1: return stdAc::fanspeed_t::kMedium; case kGreeFanMin: return stdAc::fanspeed_t::kMin; default: return stdAc::fanspeed_t::kAuto; } } /// Convert a stdAc::swingv_t enum into it's native setting. /// @param[in] pos The enum to be converted. /// @return The native equivalent of the enum. stdAc::swingv_t IRGreeAC::toCommonSwingV(const uint8_t pos) { switch (pos) { case kGreeSwingUp: return stdAc::swingv_t::kHighest; case kGreeSwingMiddleUp: return stdAc::swingv_t::kHigh; case kGreeSwingMiddle: return stdAc::swingv_t::kMiddle; case kGreeSwingMiddleDown: return stdAc::swingv_t::kLow; case kGreeSwingDown: return stdAc::swingv_t::kLowest; default: return stdAc::swingv_t::kAuto; } } /// Convert the current internal state into its stdAc::state_t equivalent. /// @return The stdAc equivalent of the native settings. stdAc::state_t IRGreeAC::toCommon(void) { stdAc::state_t result; result.protocol = decode_type_t::GREE; result.model = _model; result.power = _.Power; result.mode = toCommonMode(_.Mode); result.celsius = !_.UseFahrenheit; result.degrees = getTemp(); result.fanspeed = toCommonFanSpeed(_.Fan); if (_.SwingAuto) result.swingv = stdAc::swingv_t::kAuto; else result.swingv = toCommonSwingV(_.Swing); result.turbo = _.Turbo; result.light = _.Light; result.clean = _.Xfan; result.sleep = _.Sleep ? 0 : -1; // Not supported. result.swingh = stdAc::swingh_t::kOff; result.quiet = false; result.econo = false; result.filter = false; result.beep = false; result.clock = -1; return result; } /// Convert the current internal state into a human readable string. /// @return A human readable string. String IRGreeAC::toString(void) { String result = ""; result.reserve(220); // Reserve some heap for the string to reduce fragging. result += addModelToString(decode_type_t::GREE, _model, false); result += addBoolToString(_.Power, kPowerStr); result += addModeToString(_.Mode, kGreeAuto, kGreeCool, kGreeHeat, kGreeDry, kGreeFan); result += addTempToString(getTemp(), !_.UseFahrenheit); result += addFanToString(_.Fan, kGreeFanMax, kGreeFanMin, kGreeFanAuto, kGreeFanAuto, kGreeFanMed); result += addBoolToString(_.Turbo, kTurboStr); result += addBoolToString(_.IFeel, kIFeelStr); result += addBoolToString(_.WiFi, kWifiStr); result += addBoolToString(_.Xfan, kXFanStr); result += addBoolToString(_.Light, kLightStr); result += addBoolToString(_.Sleep, kSleepStr); result += addLabeledString(_.SwingAuto ? kAutoStr : kManualStr, kSwingVModeStr); result += addIntToString(_.Swing, kSwingVStr); result += kSpaceLBraceStr; switch (_.Swing) { case kGreeSwingLastPos: result += kLastStr; break; case kGreeSwingAuto: result += kAutoStr; break; default: result += kUnknownStr; } result += ')'; result += addLabeledString( _.TimerEnabled ? minsToString(getTimer()) : kOffStr, kTimerStr); uint8_t src = _.DisplayTemp; result += addIntToString(src, kDisplayTempStr); result += kSpaceLBraceStr; switch (src) { case kGreeDisplayTempOff: result += kOffStr; break; case kGreeDisplayTempSet: result += kSetStr; break; case kGreeDisplayTempInside: result += kInsideStr; break; case kGreeDisplayTempOutside: result += kOutsideStr; break; default: result += kUnknownStr; } result += ')'; return result; } #if DECODE_GREE /// Decode the supplied Gree HVAC message. /// Status: STABLE / Working. /// @param[in,out] results Ptr to the data to decode & where to store the decode /// result. /// @param[in] offset The starting index to use when attempting to decode the /// raw data. Typically/Defaults to kStartOffset. /// @param[in] nbits The number of data bits to expect. /// @param[in] strict Flag indicating if we should perform strict matching. /// @return A boolean. True if it can decode it, false if it can't. bool IRrecv::decodeGree(decode_results* results, uint16_t offset, const uint16_t nbits, bool const strict) { if (results->rawlen <= 2 * (nbits + kGreeBlockFooterBits) + (kHeader + kFooter + 1) - 1 + offset) return false; // Can't possibly be a valid Gree message. if (strict && nbits != kGreeBits) return false; // Not strictly a Gree message. // There are two blocks back-to-back in a full Gree IR message // sequence. uint16_t used; // Header + Data Block #1 (32 bits) used = matchGeneric(results->rawbuf + offset, results->state, results->rawlen - offset, nbits / 2, kGreeHdrMark, kGreeHdrSpace, kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace, 0, 0, false, _tolerance, kMarkExcess, false); if (used == 0) return false; offset += used; // Block #1 footer (3 bits, B010) match_result_t data_result; data_result = matchData(&(results->rawbuf[offset]), kGreeBlockFooterBits, kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace, _tolerance, kMarkExcess, false); if (data_result.success == false) return false; if (data_result.data != kGreeBlockFooter) return false; offset += data_result.used; // Inter-block gap + Data Block #2 (32 bits) + Footer if (!matchGeneric(results->rawbuf + offset, results->state + 4, results->rawlen - offset, nbits / 2, kGreeBitMark, kGreeMsgSpace, kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace, kGreeBitMark, kGreeMsgSpace, true, _tolerance, kMarkExcess, false)) return false; // Compliance if (strict) { // Verify the message's checksum is correct. if (!IRGreeAC::validChecksum(results->state)) return false; } // Success results->decode_type = GREE; results->bits = nbits; // No need to record the state as we stored it as we decoded it. // As we use result->state, we don't record value, address, or command as it // is a union data type. return true; } #endif // DECODE_GREE