// Copyright 2019 David Conran #include "ir_Tcl.h" #include #include #ifndef ARDUINO #include #endif #include "IRremoteESP8266.h" #include "IRtext.h" #include "IRutils.h" // Constants using irutils::addBoolToString; using irutils::addFanToString; using irutils::addIntToString; using irutils::addLabeledString; using irutils::addModeToString; using irutils::addTempToString; using irutils::setBit; using irutils::setBits; #if SEND_TCL112AC void IRsend::sendTcl112Ac(const unsigned char data[], const uint16_t nbytes, const uint16_t repeat) { sendGeneric(kTcl112AcHdrMark, kTcl112AcHdrSpace, kTcl112AcBitMark, kTcl112AcOneSpace, kTcl112AcBitMark, kTcl112AcZeroSpace, kTcl112AcBitMark, kTcl112AcGap, data, nbytes, 38000, false, repeat, 50); } #endif // SEND_TCL112AC IRTcl112Ac::IRTcl112Ac(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { stateReset(); } void IRTcl112Ac::begin(void) { this->_irsend.begin(); } #if SEND_TCL112AC void IRTcl112Ac::send(const uint16_t repeat) { this->_irsend.sendTcl112Ac(getRaw(), kTcl112AcStateLength, repeat); } #endif // SEND_TCL112AC // Calculate the checksum for a given array. // Args: // state: The array to calculate the checksum over. // length: The size of the array. // Returns: // The 8 bit checksum value. uint8_t IRTcl112Ac::calcChecksum(uint8_t state[], const uint16_t length) { if (length) return sumBytes(state, length - 1); else return 0; } // Calculate & set the checksum for the current internal state of the remote. void IRTcl112Ac::checksum(const uint16_t length) { // Stored the checksum value in the last byte. if (length > 1) remote_state[length - 1] = calcChecksum(remote_state, length); } // Verify the checksum is valid for a given state. // Args: // state: The array to verify the checksum of. // length: The size of the state. // Returns: // A boolean. bool IRTcl112Ac::validChecksum(uint8_t state[], const uint16_t length) { return (length > 1 && state[length - 1] == calcChecksum(state, length)); } void IRTcl112Ac::stateReset(void) { // A known good state. (On, Cool, 24C) static const uint8_t reset[kTcl112AcStateLength] = { 0x23, 0xCB, 0x26, 0x01, 0x00, 0x24, 0x03, 0x07, 0x40, 0x00, 0x00, 0x00, 0x00, 0x03}; memcpy(remote_state, reset, kTcl112AcStateLength); } uint8_t* IRTcl112Ac::getRaw(void) { this->checksum(); return remote_state; } void IRTcl112Ac::setRaw(const uint8_t new_code[], const uint16_t length) { memcpy(remote_state, new_code, std::min(length, kTcl112AcStateLength)); } // Set the requested power state of the A/C to on. void IRTcl112Ac::on(void) { this->setPower(true); } // Set the requested power state of the A/C to off. void IRTcl112Ac::off(void) { this->setPower(false); } // Set the requested power state of the A/C. void IRTcl112Ac::setPower(const bool on) { setBit(&remote_state[5], kTcl112AcPowerOffset, on); } // Return the requested power state of the A/C. bool IRTcl112Ac::getPower(void) { return GETBIT8(remote_state[5], kTcl112AcPowerOffset); } // Get the requested climate operation mode of the a/c unit. // Returns: // A uint8_t containing the A/C mode. uint8_t IRTcl112Ac::getMode(void) { return remote_state[6] & 0xF; } // Set the requested climate operation mode of the a/c unit. // Note: Fan/Ventilation mode sets the fan speed to high. // Unknown values default to Auto. void IRTcl112Ac::setMode(const uint8_t mode) { // If we get an unexpected mode, default to AUTO. switch (mode) { case kTcl112AcFan: this->setFan(kTcl112AcFanHigh); // FALLTHRU case kTcl112AcAuto: case kTcl112AcCool: case kTcl112AcHeat: case kTcl112AcDry: setBits(&remote_state[6], kLowNibble, kTcl112AcModeSize, mode); break; default: setMode(kTcl112AcAuto); } } void IRTcl112Ac::setTemp(const float celsius) { // Make sure we have desired temp in the correct range. float safecelsius = std::max(celsius, kTcl112AcTempMin); safecelsius = std::min(safecelsius, kTcl112AcTempMax); // Convert to integer nr. of half degrees. uint8_t nrHalfDegrees = safecelsius * 2; // Do we have a half degree celsius? setBit(&remote_state[12], kTcl112AcHalfDegreeOffset, nrHalfDegrees & 1); setBits(&remote_state[7], kLowNibble, kNibbleSize, (uint8_t)kTcl112AcTempMax - nrHalfDegrees / 2); } float IRTcl112Ac::getTemp(void) { float result = kTcl112AcTempMax - GETBITS8(remote_state[7], kLowNibble, kNibbleSize); if (GETBIT8(remote_state[12], kTcl112AcHalfDegreeOffset)) result += 0.5; return result; } // Set the speed of the fan. // Unknown speeds will default to Auto. void IRTcl112Ac::setFan(const uint8_t speed) { switch (speed) { case kTcl112AcFanAuto: case kTcl112AcFanLow: case kTcl112AcFanMed: case kTcl112AcFanHigh: setBits(&remote_state[8], kLowNibble, kTcl112AcFanSize, speed); break; default: this->setFan(kTcl112AcFanAuto); } } // Return the currect fan speed. uint8_t IRTcl112Ac::getFan(void) { return GETBITS8(remote_state[8], kLowNibble, kTcl112AcFanSize); } // Control economy mode. void IRTcl112Ac::setEcono(const bool on) { setBit(&remote_state[5], kTcl112AcBitEconoOffset, on); } // Return the economy state of the A/C. bool IRTcl112Ac::getEcono(void) { return GETBIT8(remote_state[5], kTcl112AcBitEconoOffset); } // Control Health mode. void IRTcl112Ac::setHealth(const bool on) { setBit(&remote_state[6], kTcl112AcBitHealthOffset, on); } // Return the Health mode state of the A/C. bool IRTcl112Ac::getHealth(void) { return GETBIT8(remote_state[6], kTcl112AcBitHealthOffset); } // Control Light/Display mode. void IRTcl112Ac::setLight(const bool on) { setBit(&remote_state[5], kTcl112AcBitLightOffset, !on); // Cleared when on. } // Return the Light/Display mode state of the A/C. bool IRTcl112Ac::getLight(void) { return !GETBIT8(remote_state[5], kTcl112AcBitLightOffset); } // Control Horizontal Swing. void IRTcl112Ac::setSwingHorizontal(const bool on) { setBit(&remote_state[12], kTcl112AcBitSwingHOffset, on); } // Return the Horizontal Swing state of the A/C. bool IRTcl112Ac::getSwingHorizontal(void) { return GETBIT8(remote_state[12], kTcl112AcBitSwingHOffset); } // Control Vertical Swing. void IRTcl112Ac::setSwingVertical(const bool on) { setBits(&remote_state[8], kTcl112AcSwingVOffset, kTcl112AcSwingVSize, on ? kTcl112AcSwingVOn : kTcl112AcSwingVOff); } // Return the Vertical Swing state of the A/C. bool IRTcl112Ac::getSwingVertical(void) { return GETBITS8(remote_state[8], kTcl112AcSwingVOffset, kTcl112AcSwingVSize); } // Control the Turbo setting. void IRTcl112Ac::setTurbo(const bool on) { setBit(&remote_state[6], kTcl112AcBitTurboOffset, on); if (on) { this->setFan(kTcl112AcFanHigh); this->setSwingVertical(true); } } // Return the Turbo setting state of the A/C. bool IRTcl112Ac::getTurbo(void) { return GETBIT8(remote_state[6], kTcl112AcBitTurboOffset); } // Convert a standard A/C mode into its native mode. uint8_t IRTcl112Ac::convertMode(const stdAc::opmode_t mode) { switch (mode) { case stdAc::opmode_t::kCool: return kTcl112AcCool; case stdAc::opmode_t::kHeat: return kTcl112AcHeat; case stdAc::opmode_t::kDry: return kTcl112AcDry; case stdAc::opmode_t::kFan: return kTcl112AcFan; default: return kTcl112AcAuto; } } // Convert a standard A/C Fan speed into its native fan speed. uint8_t IRTcl112Ac::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: case stdAc::fanspeed_t::kLow: return kTcl112AcFanLow; case stdAc::fanspeed_t::kMedium: return kTcl112AcFanMed; case stdAc::fanspeed_t::kHigh: case stdAc::fanspeed_t::kMax: return kTcl112AcFanHigh; default: return kTcl112AcFanAuto; } } // Convert a native mode to it's common equivalent. stdAc::opmode_t IRTcl112Ac::toCommonMode(const uint8_t mode) { switch (mode) { case kTcl112AcCool: return stdAc::opmode_t::kCool; case kTcl112AcHeat: return stdAc::opmode_t::kHeat; case kTcl112AcDry: return stdAc::opmode_t::kDry; case kTcl112AcFan: return stdAc::opmode_t::kFan; default: return stdAc::opmode_t::kAuto; } } // Convert a native fan speed to it's common equivalent. stdAc::fanspeed_t IRTcl112Ac::toCommonFanSpeed(const uint8_t spd) { switch (spd) { case kTcl112AcFanHigh: return stdAc::fanspeed_t::kMax; case kTcl112AcFanMed: return stdAc::fanspeed_t::kMedium; case kTcl112AcFanLow: return stdAc::fanspeed_t::kMin; default: return stdAc::fanspeed_t::kAuto; } } // Convert the A/C state to it's common equivalent. stdAc::state_t IRTcl112Ac::toCommon(void) { stdAc::state_t result; result.protocol = decode_type_t::TCL112AC; result.model = -1; // Not supported. result.power = this->getPower(); result.mode = this->toCommonMode(this->getMode()); result.celsius = true; result.degrees = this->getTemp(); result.fanspeed = this->toCommonFanSpeed(this->getFan()); result.swingv = this->getSwingVertical() ? stdAc::swingv_t::kAuto : stdAc::swingv_t::kOff; result.swingh = this->getSwingHorizontal() ? stdAc::swingh_t::kAuto : stdAc::swingh_t::kOff; result.turbo = this->getTurbo(); result.light = this->getLight(); result.filter = this->getHealth(); result.econo = this->getEcono(); // Not supported. result.quiet = false; result.clean = false; result.beep = false; result.sleep = -1; result.clock = -1; return result; } // Convert the internal state into a human readable string. String IRTcl112Ac::toString(void) { String result = ""; result.reserve(140); // Reserve some heap for the string to reduce fragging. result += addBoolToString(getPower(), kPowerStr, false); result += addModeToString(getMode(), kTcl112AcAuto, kTcl112AcCool, kTcl112AcHeat, kTcl112AcDry, kTcl112AcFan); uint16_t nrHalfDegrees = this->getTemp() * 2; result += addIntToString(nrHalfDegrees / 2, kTempStr); if (nrHalfDegrees & 1) result += F(".5"); result += 'C'; result += addFanToString(getFan(), kTcl112AcFanHigh, kTcl112AcFanLow, kTcl112AcFanAuto, kTcl112AcFanAuto, kTcl112AcFanMed); result += addBoolToString(getEcono(), kEconoStr); result += addBoolToString(getHealth(), kHealthStr); result += addBoolToString(getLight(), kLightStr); result += addBoolToString(getTurbo(), kTurboStr); result += addBoolToString(getSwingHorizontal(), kSwingHStr); result += addBoolToString(getSwingVertical(), kSwingVStr); return result; } #if DECODE_TCL112AC // NOTE: There is no `decodedecodeTcl112Ac()`. // It's the same as `decodeMitsubishi112()`. A shared routine is used. // You can find it in: ir_Mitsubishi.cpp #endif // DECODE_TCL112AC