// Copyright 2020 Quentin Briollant /// @file /// @brief Support for Technibel protocol. #include "ir_Technibel.h" #include "IRrecv.h" #include "IRsend.h" #include "IRtext.h" #include "IRutils.h" #include using irutils::addBoolToString; using irutils::addModeToString; using irutils::addFanToString; using irutils::addLabeledString; using irutils::addTempToString; using irutils::minsToString; const uint16_t kTechnibelAcHdrMark = 8836; const uint16_t kTechnibelAcHdrSpace = 4380; const uint16_t kTechnibelAcBitMark = 523; const uint16_t kTechnibelAcOneSpace = 1696; const uint16_t kTechnibelAcZeroSpace = 564; const uint32_t kTechnibelAcGap = kDefaultMessageGap; const uint16_t kTechnibelAcFreq = 38000; #if SEND_TECHNIBEL_AC /// Send an Technibel AC formatted message. /// Status: STABLE / Reported as working on a real device. /// @param[in] data containing the IR command. /// @param[in] nbits Nr. of bits to send. usually kTechnibelAcBits /// @param[in] repeat Nr. of times the message is to be repeated. void IRsend::sendTechnibelAc(const uint64_t data, const uint16_t nbits, const uint16_t repeat) { sendGeneric(kTechnibelAcHdrMark, kTechnibelAcHdrSpace, kTechnibelAcBitMark, kTechnibelAcOneSpace, kTechnibelAcBitMark, kTechnibelAcZeroSpace, kTechnibelAcBitMark, kTechnibelAcGap, data, nbits, kTechnibelAcFreq, true, // LSB First. repeat, kDutyDefault); } #endif // SEND_TECHNIBEL_AC #if DECODE_TECHNIBEL_AC /// Status: STABLE / Reported as working on a real device /// @param[in,out] results Ptr to data to decode & where to store the decode /// @param[in] offset The starting index to use when attempting to decode the /// raw data. Typically/Defaults to kStartOffset. /// @param[in] nbits The number of data bits to expect (kTechnibelAcBits). /// @param[in] strict Flag indicating if we should perform strict matching. /// @return A boolean. True if it can decode it, false if it can't. bool IRrecv::decodeTechnibelAc(decode_results *results, uint16_t offset, const uint16_t nbits, const bool strict) { // Compliance if (strict && nbits != kTechnibelAcBits) { return false; } uint64_t data = 0; // Header + Data + Footer if (!matchGeneric(results->rawbuf + offset, &data, results->rawlen - offset, nbits, kTechnibelAcHdrMark, kTechnibelAcHdrSpace, kTechnibelAcBitMark, kTechnibelAcOneSpace, kTechnibelAcBitMark, kTechnibelAcZeroSpace, kTechnibelAcBitMark, kTechnibelAcGap, true, _tolerance, kMarkExcess, true)) return false; // Compliance if (strict && !IRTechnibelAc::validChecksum(data)) return false; // Success results->decode_type = decode_type_t::TECHNIBEL_AC; results->bits = nbits; results->value = data; results->command = 0; results->address = 0; return true; } #endif // DECODE_TECHNIBEL_AC /// Class constructor /// @param[in] pin GPIO to be used when sending. /// @param[in] inverted Is the output signal to be inverted? /// @param[in] use_modulation Is frequency modulation to be used? IRTechnibelAc::IRTechnibelAc(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { stateReset(); } /// Set up hardware to be able to send a message. void IRTechnibelAc::begin(void) { _irsend.begin(); } #if SEND_TECHNIBEL_AC /// Send the current internal state as an IR message. /// @param[in] repeat Nr. of times the message will be repeated. void IRTechnibelAc::send(const uint16_t repeat) { _irsend.sendTechnibelAc(getRaw(), kTechnibelAcBits, repeat); } #endif // SEND_TECHNIBEL_AC /// Compute the checksum of the supplied state. /// @param[in] state A valid code for this protocol. /// @return The calculated checksum of the supplied state. uint8_t IRTechnibelAc::calcChecksum(const uint64_t state) { uint8_t sum = 0; // Add up all the 8 bit data chunks. for (uint8_t offset = kTechnibelAcTimerHoursOffset; offset < kTechnibelAcHeaderOffset; offset += 8) sum += GETBITS64(state, offset, 8); return ~sum + 1; } /// Confirm the checksum of the supplied state is valid. /// @param[in] state A valid code for this protocol. /// @return `true` if the checksum is correct, otherwise `false`. bool IRTechnibelAc::validChecksum(const uint64_t state) { TechnibelProtocol p{.raw = state}; return calcChecksum(state) == p.Sum; } /// Set the checksum of the internal state. void IRTechnibelAc::checksum(void) { _.Sum = calcChecksum(_.raw); } /// Reset the internal state of the emulation. /// @note Mode:Cool, Power:Off, fan:Low, temp:20, swing:Off, sleep:Off void IRTechnibelAc::stateReset(void) { _.raw = kTechnibelAcResetState; _saved_temp = 20; // DegC (Random reasonable default value) _saved_temp_units = 0; // Celsius } /// Get a copy of the internal state/code for this protocol. /// @return A code for this protocol based on the current internal state. uint64_t IRTechnibelAc::getRaw(void) { checksum(); return _.raw; } /// Set the internal state from a valid code for this protocol. /// @param[in] state A valid code for this protocol. void IRTechnibelAc::setRaw(const uint64_t state) { _.raw = state; } /// Set the requested power state of the A/C to on. void IRTechnibelAc::on(void) { setPower(true); } /// Set the requested power state of the A/C to off. void IRTechnibelAc::off(void) { setPower(false); } /// Change the power setting. /// @param[in] on true, the setting is on. false, the setting is off. void IRTechnibelAc::setPower(const bool on) { _.Power = on; } /// Get the value of the current power setting. /// @return true, the setting is on. false, the setting is off. bool IRTechnibelAc::getPower(void) const { return _.Power; } /// Set the temperature unit setting. /// @param[in] fahrenheit true, the unit is °F. false, the unit is °C. void IRTechnibelAc::setTempUnit(const bool fahrenheit) { _saved_temp_units = fahrenheit; _.UseFah = fahrenheit; } /// Get the temperature unit setting. /// @return true, the unit is °F. false, the unit is °C. bool IRTechnibelAc::getTempUnit(void) const { return _.UseFah; } /// Set the temperature. /// @param[in] degrees The temperature in degrees. /// @param[in] fahrenheit The temperature unit: true=°F, false(default)=°C. void IRTechnibelAc::setTemp(const uint8_t degrees, const bool fahrenheit) { setTempUnit(fahrenheit); uint8_t temp_min = fahrenheit ? kTechnibelAcTempMinF : kTechnibelAcTempMinC; uint8_t temp_max = fahrenheit ? kTechnibelAcTempMaxF : kTechnibelAcTempMaxC; _saved_temp = std::min(temp_max, std::max(temp_min, degrees)); _.Temp = _saved_temp; } /// Get the current temperature setting. /// @return The current setting for temp. in degrees. uint8_t IRTechnibelAc::getTemp(void) const { return _.Temp; } /// Set the speed of the fan. /// @param[in] speed The desired setting. void IRTechnibelAc::setFan(const uint8_t speed) { // Mode fan speed rules. if (_.Mode == kTechnibelAcDry && speed != kTechnibelAcFanLow) { _.Fan = kTechnibelAcFanLow; return; } switch (speed) { case kTechnibelAcFanHigh: case kTechnibelAcFanMedium: case kTechnibelAcFanLow: _.Fan = speed; break; default: _.Fan = kTechnibelAcFanLow; } } /// Get the current fan speed setting. /// @return The current fan speed/mode. uint8_t IRTechnibelAc::getFan(void) const { return _.Fan; } /// Convert a stdAc::fanspeed_t enum into it's native speed. /// @param[in] speed The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRTechnibelAc::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: case stdAc::fanspeed_t::kLow: return kTechnibelAcFanLow; case stdAc::fanspeed_t::kMedium: return kTechnibelAcFanMedium; case stdAc::fanspeed_t::kHigh: case stdAc::fanspeed_t::kMax: return kTechnibelAcFanHigh; default: return kTechnibelAcFanLow; } } /// Convert a native fan speed into its stdAc equivalent. /// @param[in] speed The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::fanspeed_t IRTechnibelAc::toCommonFanSpeed(const uint8_t speed) { switch (speed) { case kTechnibelAcFanHigh: return stdAc::fanspeed_t::kHigh; case kTechnibelAcFanMedium: return stdAc::fanspeed_t::kMedium; default: return stdAc::fanspeed_t::kLow; } } /// Get the operating mode setting of the A/C. /// @return The current operating mode setting. uint8_t IRTechnibelAc::getMode(void) const { return _.Mode; } /// Set the operating mode of the A/C. /// @param[in] mode The desired operating mode. void IRTechnibelAc::setMode(const uint8_t mode) { _.Mode = mode; switch (mode) { case kTechnibelAcHeat: case kTechnibelAcFan: case kTechnibelAcDry: case kTechnibelAcCool: break; default: _.Mode = kTechnibelAcCool; } setFan(_.Fan); // Re-force any fan speed constraints. // Restore previous temp settings for cool mode. setTemp(_saved_temp, _saved_temp_units); } /// Convert a stdAc::opmode_t enum into its native mode. /// @param[in] mode The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRTechnibelAc::convertMode(const stdAc::opmode_t mode) { switch (mode) { case stdAc::opmode_t::kHeat: return kTechnibelAcHeat; case stdAc::opmode_t::kDry: return kTechnibelAcDry; case stdAc::opmode_t::kFan: return kTechnibelAcFan; default: return kTechnibelAcCool; } } /// Convert a native mode into its stdAc equivalent. /// @param[in] mode The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::opmode_t IRTechnibelAc::toCommonMode(const uint8_t mode) { switch (mode) { case kTechnibelAcHeat: return stdAc::opmode_t::kHeat; case kTechnibelAcDry: return stdAc::opmode_t::kDry; case kTechnibelAcFan: return stdAc::opmode_t::kFan; default: return stdAc::opmode_t::kCool; } } /// Set the (vertical) swing setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRTechnibelAc::setSwing(const bool on) { _.Swing = on; } /// Get the (vertical) swing setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRTechnibelAc::getSwing(void) const { return _.Swing; } /// Convert a stdAc::swingv_t enum into it's native swing. /// @param[in] swing The enum to be converted. /// @return true, the swing is on. false, the swing is off. bool IRTechnibelAc::convertSwing(const stdAc::swingv_t swing) { return swing != stdAc::swingv_t::kOff; } /// Convert a native swing into its stdAc equivalent. /// @param[in] swing true, the swing is on. false, the swing is off. /// @return The stdAc equivalent of the native setting. stdAc::swingv_t IRTechnibelAc::toCommonSwing(const bool swing) { return swing ? stdAc::swingv_t::kAuto : stdAc::swingv_t::kOff; } /// Set the Sleep setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRTechnibelAc::setSleep(const bool on) { _.Sleep = on; } /// Get the Sleep setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRTechnibelAc::getSleep(void) const { return _.Sleep; } /// Set the enable timer setting. /// @param[in] on true, the setting is on. false, the setting is off. void IRTechnibelAc::setTimerEnabled(const bool on) { _.TimerEnable = on; } /// Is the timer function enabled? /// @return true, the setting is on. false, the setting is off. bool IRTechnibelAc::getTimerEnabled(void) const { return _.TimerEnable; } /// Set the timer for when the A/C unit will switch off. /// @param[in] nr_of_mins Number of minutes before power off. /// `0` will clear the timer. Max is 24 hrs (1440 mins). /// @note Time is stored internally in hours. void IRTechnibelAc::setTimer(const uint16_t nr_of_mins) { const uint8_t hours = nr_of_mins / 60; _.TimerHours = std::min(kTechnibelAcTimerMax, hours); // Enable or not? setTimerEnabled(hours); } /// Get the timer time for when the A/C unit will switch power state. /// @return The number of minutes left on the timer. `0` means off. uint16_t IRTechnibelAc::getTimer(void) const { return _.TimerEnable ? _.TimerHours * 60 : 0; } /// Convert the current internal state into its stdAc::state_t equivalent. /// @return The stdAc equivalent of the native settings. stdAc::state_t IRTechnibelAc::toCommon(void) const { stdAc::state_t result; result.protocol = decode_type_t::TECHNIBEL_AC; result.power = _.Power; result.mode = toCommonMode(_.Mode); result.celsius = !_.UseFah; result.degrees = _.Temp; result.fanspeed = toCommonFanSpeed(_.Fan); result.sleep = _.Sleep ? 0 : -1; result.swingv = toCommonSwing(_.Swing); // Not supported. result.model = -1; result.turbo = false; result.swingh = stdAc::swingh_t::kOff; result.light = false; result.filter = false; result.econo = false; result.quiet = false; result.clean = false; result.beep = false; result.clock = -1; return result; } /// Convert the current internal state into a human readable string. /// @return A human readable string. String IRTechnibelAc::toString(void) const { String result = ""; result.reserve(100); // Reserve some heap for the string to reduce fragging. result += addBoolToString(_.Power, kPowerStr, false); result += addModeToString(_.Mode, 255, // No Auto, so use impossible value kTechnibelAcCool, kTechnibelAcHeat, kTechnibelAcDry, kTechnibelAcFan); result += addFanToString(_.Fan, kTechnibelAcFanHigh, kTechnibelAcFanLow, kTechnibelAcFanLow, kTechnibelAcFanLow, kTechnibelAcFanMedium); result += addTempToString(_.Temp, !_.UseFah); result += addBoolToString(_.Sleep, kSleepStr); result += addBoolToString(_.Swing, kSwingVStr); result += addLabeledString(_.TimerEnable ? minsToString(getTimer()) : kOffStr, kTimerStr); return result; }