// Copyright 2009 Ken Shirriff // Copyright 2017, 2018, 2019 David Conran /// @file /// @brief Support for Samsung protocols. /// Samsung originally added from https://github.com/shirriff/Arduino-IRremote/ /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/505 /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/621 /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1062 /// @see http://elektrolab.wz.cz/katalog/samsung_protocol.pdf #include "ir_Samsung.h" #include #include #ifndef ARDUINO #include #endif #include "IRrecv.h" #include "IRsend.h" #include "IRtext.h" #include "IRutils.h" // Constants const uint16_t kSamsungTick = 560; const uint16_t kSamsungHdrMarkTicks = 8; const uint16_t kSamsungHdrMark = kSamsungHdrMarkTicks * kSamsungTick; const uint16_t kSamsungHdrSpaceTicks = 8; const uint16_t kSamsungHdrSpace = kSamsungHdrSpaceTicks * kSamsungTick; const uint16_t kSamsungBitMarkTicks = 1; const uint16_t kSamsungBitMark = kSamsungBitMarkTicks * kSamsungTick; const uint16_t kSamsungOneSpaceTicks = 3; const uint16_t kSamsungOneSpace = kSamsungOneSpaceTicks * kSamsungTick; const uint16_t kSamsungZeroSpaceTicks = 1; const uint16_t kSamsungZeroSpace = kSamsungZeroSpaceTicks * kSamsungTick; const uint16_t kSamsungRptSpaceTicks = 4; const uint16_t kSamsungRptSpace = kSamsungRptSpaceTicks * kSamsungTick; const uint16_t kSamsungMinMessageLengthTicks = 193; const uint32_t kSamsungMinMessageLength = kSamsungMinMessageLengthTicks * kSamsungTick; const uint16_t kSamsungMinGapTicks = kSamsungMinMessageLengthTicks - (kSamsungHdrMarkTicks + kSamsungHdrSpaceTicks + kSamsungBits * (kSamsungBitMarkTicks + kSamsungOneSpaceTicks) + kSamsungBitMarkTicks); const uint32_t kSamsungMinGap = kSamsungMinGapTicks * kSamsungTick; const uint16_t kSamsungAcHdrMark = 690; const uint16_t kSamsungAcHdrSpace = 17844; const uint8_t kSamsungAcSections = 2; const uint16_t kSamsungAcSectionMark = 3086; const uint16_t kSamsungAcSectionSpace = 8864; const uint16_t kSamsungAcSectionGap = 2886; const uint16_t kSamsungAcBitMark = 586; const uint16_t kSamsungAcOneSpace = 1432; const uint16_t kSamsungAcZeroSpace = 436; // Data from https://github.com/crankyoldgit/IRremoteESP8266/issues/1220 // Values calculated based on the average of ten messages. const uint16_t kSamsung36HdrMark = 4515; /// < uSeconds const uint16_t kSamsung36HdrSpace = 4438; /// < uSeconds const uint16_t kSamsung36BitMark = 512; /// < uSeconds const uint16_t kSamsung36OneSpace = 1468; /// < uSeconds const uint16_t kSamsung36ZeroSpace = 490; /// < uSeconds using irutils::addBoolToString; using irutils::addFanToString; using irutils::addIntToString; using irutils::addLabeledString; using irutils::addModeToString; using irutils::addTempToString; #if SEND_SAMSUNG /// Send a 32-bit Samsung formatted message. /// Status: STABLE / Should be working. /// @param[in] data The message to be sent. /// @param[in] nbits The number of bits of message to be sent. /// @param[in] repeat The number of times the command is to be repeated. /// @see http://elektrolab.wz.cz/katalog/samsung_protocol.pdf /// @note Samsung has a separate message to indicate a repeat, like NEC does. /// @todo Confirm that is actually how Samsung sends a repeat. /// The refdoc doesn't indicate it is true. void IRsend::sendSAMSUNG(const uint64_t data, const uint16_t nbits, const uint16_t repeat) { sendGeneric(kSamsungHdrMark, kSamsungHdrSpace, kSamsungBitMark, kSamsungOneSpace, kSamsungBitMark, kSamsungZeroSpace, kSamsungBitMark, kSamsungMinGap, kSamsungMinMessageLength, data, nbits, 38, true, repeat, 33); } /// Construct a raw Samsung message from the supplied customer(address) & /// command. /// Status: STABLE / Should be working. /// @param[in] customer The customer code. (aka. Address) /// @param[in] command The command code. /// @return A raw 32-bit Samsung message suitable for `sendSAMSUNG()`. uint32_t IRsend::encodeSAMSUNG(const uint8_t customer, const uint8_t command) { uint8_t revcustomer = reverseBits(customer, sizeof(customer) * 8); uint8_t revcommand = reverseBits(command, sizeof(command) * 8); return ((revcommand ^ 0xFF) | (revcommand << 8) | (revcustomer << 16) | (revcustomer << 24)); } #endif #if DECODE_SAMSUNG /// Decode the supplied Samsung 32-bit message. /// Status: STABLE /// @note Samsung messages whilst 32 bits in size, only contain 16 bits of /// distinct data. e.g. In transmition order: /// customer_byte + customer_byte(same) + address_byte + invert(address_byte) /// @param[in,out] results Ptr to the data to decode & where to store the result /// @param[in] offset The starting index to use when attempting to decode the /// raw data. Typically/Defaults to kStartOffset. /// @param[in] nbits The number of data bits to expect. /// @param[in] strict Flag indicating if we should perform strict matching. /// @return True if it can decode it, false if it can't. /// @note LG 32bit protocol appears near identical to the Samsung protocol. /// They differ on their compliance criteria and how they repeat. /// @see http://elektrolab.wz.cz/katalog/samsung_protocol.pdf bool IRrecv::decodeSAMSUNG(decode_results *results, uint16_t offset, const uint16_t nbits, const bool strict) { if (strict && nbits != kSamsungBits) return false; // We expect Samsung to be 32 bits of message. uint64_t data = 0; // Match Header + Data + Footer if (!matchGeneric(results->rawbuf + offset, &data, results->rawlen - offset, nbits, kSamsungHdrMark, kSamsungHdrSpace, kSamsungBitMark, kSamsungOneSpace, kSamsungBitMark, kSamsungZeroSpace, kSamsungBitMark, kSamsungMinGap, true)) return false; // Compliance // According to the spec, the customer (address) code is the first 8 // transmitted bits. It's then repeated. Check for that. uint8_t address = data >> 24; if (strict && address != ((data >> 16) & 0xFF)) return false; // Spec says the command code is the 3rd block of transmitted 8-bits, // followed by the inverted command code. uint8_t command = (data & 0xFF00) >> 8; if (strict && command != ((data & 0xFF) ^ 0xFF)) return false; // Success results->bits = nbits; results->value = data; results->decode_type = SAMSUNG; // command & address need to be reversed as they are transmitted LSB first, results->command = reverseBits(command, sizeof(command) * 8); results->address = reverseBits(address, sizeof(address) * 8); return true; } #endif #if SEND_SAMSUNG36 /// Send a Samsung 36-bit formatted message. /// Status: STABLE / Works on real devices. /// @param[in] data The message to be sent. /// @param[in] nbits The number of bits of message to be sent. /// @param[in] repeat The number of times the command is to be repeated. /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/621 void IRsend::sendSamsung36(const uint64_t data, const uint16_t nbits, const uint16_t repeat) { if (nbits < 16) return; // To small to send. for (uint16_t r = 0; r <= repeat; r++) { // Block #1 (16 bits) sendGeneric(kSamsung36HdrMark, kSamsung36HdrSpace, kSamsung36BitMark, kSamsung36OneSpace, kSamsung36BitMark, kSamsung36ZeroSpace, kSamsung36BitMark, kSamsung36HdrSpace, data >> (nbits - 16), 16, 38, true, 0, kDutyDefault); // Block #2 (The rest, typically 20 bits) sendGeneric(0, 0, // No header kSamsung36BitMark, kSamsung36OneSpace, kSamsung36BitMark, kSamsung36ZeroSpace, kSamsung36BitMark, kSamsungMinGap, // Gap is just a guess. // Mask off the rest of the bits. data & ((1ULL << (nbits - 16)) - 1), nbits - 16, 38, true, 0, kDutyDefault); } } #endif // SEND_SAMSUNG36 #if DECODE_SAMSUNG36 /// Decode the supplied Samsung36 message. /// Status: STABLE / Expected to work. /// @param[in,out] results Ptr to the data to decode & where to store the result /// @param[in] offset The starting index to use when attempting to decode the /// raw data. Typically/Defaults to kStartOffset. /// @param[in] nbits The number of data bits to expect. /// @param[in] strict Flag indicating if we should perform strict matching. /// @return True if it can decode it, false if it can't. /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/621 bool IRrecv::decodeSamsung36(decode_results *results, uint16_t offset, const uint16_t nbits, const bool strict) { if (results->rawlen < 2 * nbits + kHeader + kFooter * 2 - 1 + offset) return false; // Can't possibly be a valid Samsung message. // We need to be looking for > 16 bits to make sense. if (nbits <= 16) return false; if (strict && nbits != kSamsung36Bits) return false; // We expect nbits to be 36 bits of message. uint64_t data = 0; // Match Header + Data + Footer uint16_t used; used = matchGeneric(results->rawbuf + offset, &data, results->rawlen - offset, 16, kSamsung36HdrMark, kSamsung36HdrSpace, kSamsung36BitMark, kSamsung36OneSpace, kSamsung36BitMark, kSamsung36ZeroSpace, kSamsung36BitMark, kSamsung36HdrSpace, false); if (!used) return false; offset += used; // Data (Block #2) uint64_t data2 = 0; if (!matchGeneric(results->rawbuf + offset, &data2, results->rawlen - offset, nbits - 16, 0, 0, kSamsung36BitMark, kSamsung36OneSpace, kSamsung36BitMark, kSamsung36ZeroSpace, kSamsung36BitMark, kSamsungMinGap, true)) return false; data <<= (nbits - 16); data += data2; // Success results->bits = nbits; results->value = data; results->decode_type = SAMSUNG36; results->command = data & ((1ULL << (nbits - 16)) - 1); results->address = data >> (nbits - 16); return true; } #endif // DECODE_SAMSUNG36 #if SEND_SAMSUNG_AC /// Send a Samsung A/C message. /// Status: Stable / Known working. /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/505 /// @param[in] data The message to be sent. /// @param[in] nbytes The number of bytes of message to be sent. /// @param[in] repeat The number of times the command is to be repeated. void IRsend::sendSamsungAC(const uint8_t data[], const uint16_t nbytes, const uint16_t repeat) { if (nbytes < kSamsungAcStateLength && nbytes % kSamsungAcSectionLength) return; // Not an appropriate number of bytes to send a proper message. enableIROut(38); for (uint16_t r = 0; r <= repeat; r++) { // Header mark(kSamsungAcHdrMark); space(kSamsungAcHdrSpace); // Send in 7 byte sections. for (uint16_t offset = 0; offset < nbytes; offset += kSamsungAcSectionLength) { sendGeneric(kSamsungAcSectionMark, kSamsungAcSectionSpace, kSamsungAcBitMark, kSamsungAcOneSpace, kSamsungAcBitMark, kSamsungAcZeroSpace, kSamsungAcBitMark, kSamsungAcSectionGap, data + offset, kSamsungAcSectionLength, // 7 bytes == 56 bits 38000, false, 0, 50); // Send in LSBF order } // Complete made up guess at inter-message gap. space(kDefaultMessageGap - kSamsungAcSectionGap); } } #endif // SEND_SAMSUNG_AC /// Class constructor /// @param[in] pin GPIO to be used when sending. /// @param[in] inverted Is the output signal to be inverted? /// @param[in] use_modulation Is frequency modulation to be used? IRSamsungAc::IRSamsungAc(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { stateReset(); } /// Reset the internal state of the emulation. /// @param[in] forcepower A flag indicating if force sending a special power /// message with the first `send()` call. /// @param[in] initialPower Set the initial power state. True, on. False, off. void IRSamsungAc::stateReset(const bool forcepower, const bool initialPower) { static const uint8_t kReset[kSamsungAcExtendedStateLength] = { 0x02, 0x92, 0x0F, 0x00, 0x00, 0x00, 0xF0, 0x01, 0x02, 0xAE, 0x71, 0x00, 0x15, 0xF0}; std::memcpy(_.raw, kReset, kSamsungAcExtendedStateLength); _forcepower = forcepower; _lastsentpowerstate = initialPower; setPower(initialPower); } /// Set up hardware to be able to send a message. void IRSamsungAc::begin(void) { _irsend.begin(); } /// Calculate the checksum for a given state. /// @param[in] state The array to calc the checksum of. /// @param[in] length The length/size of the array. /// @return The calculated checksum value. uint8_t IRSamsungAc::calcChecksum(const uint8_t state[], const uint16_t length) { uint8_t sum = 0; // Safety check so we don't go outside the array. if (length < 7) return 255; // Shamelessly inspired by: // https://github.com/adafruit/Raw-IR-decoder-for-Arduino/pull/3/files // Count most of the '1' bits after the checksum location. sum += countBits(state[length - 7], 8); sum -= countBits(GETBITS8(state[length - 6], kLowNibble, kNibbleSize), 8); sum += countBits(GETBITS8(state[length - 5], 1, 7), 8); sum += countBits(state + length - 4, 3); return GETBITS8(28 - sum, kLowNibble, kNibbleSize); } /// Verify the checksum is valid for a given state. /// @param[in] state The array to verify the checksum of. /// @param[in] length The length/size of the array. /// @return true, if the state has a valid checksum. Otherwise, false. bool IRSamsungAc::validChecksum(const uint8_t state[], const uint16_t length) { if (length < kSamsungAcStateLength) return true; // No checksum to compare with. Assume okay. uint8_t offset = 0; if (length >= kSamsungAcExtendedStateLength) offset = 7; return (GETBITS8(state[length - 6], kHighNibble, kNibbleSize) == IRSamsungAc::calcChecksum(state, length)) && (GETBITS8(state[length - (13 + offset)], kHighNibble, kNibbleSize) == IRSamsungAc::calcChecksum(state, length - (7 + offset))); } /// Update the checksum for the internal state. /// @param[in] length The length/size of the internal array to checksum. void IRSamsungAc::checksum(uint16_t length) { if (length < 13) return; _.Sum2 = calcChecksum(_.raw, length); _.Sum1 = calcChecksum(_.raw, length - 7); } #if SEND_SAMSUNG_AC /// Send the current internal state as an IR message. /// @param[in] repeat Nr. of times the message will be repeated. /// @param[in] calcchecksum Do we update the checksum before sending? /// @note Use for most function/mode/settings changes to the unit. /// i.e. When the device is already running. void IRSamsungAc::send(const uint16_t repeat, const bool calcchecksum) { if (calcchecksum) checksum(); // Do we need to send a the special power on/off message? if (getPower() != _lastsentpowerstate || _forcepower) { _forcepower = false; // It will now been sent, so clear the flag if set. if (getPower()) { sendOn(repeat); } else { sendOff(repeat); return; // No point sending anything else if we are turning the unit off. } } _irsend.sendSamsungAC(_.raw, kSamsungAcStateLength, repeat); } /// Send the extended current internal state as an IR message. /// @param[in] repeat Nr. of times the message will be repeated. /// @param[in] calcchecksum Do we update the checksum before sending? /// @note Use this for when you need to power on/off the device. /// Samsung A/C requires an extended length message when you want to /// change the power operating mode of the A/C unit. void IRSamsungAc::sendExtended(const uint16_t repeat, const bool calcchecksum) { if (calcchecksum) checksum(); uint8_t extended_state[kSamsungAcExtendedStateLength] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xD2, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; // Copy/convert the internal state to an extended state. for (uint16_t i = 0; i < kSamsungAcSectionLength; i++) extended_state[i] = _.raw[i]; for (uint16_t i = kSamsungAcSectionLength; i < kSamsungAcStateLength; i++) extended_state[i + kSamsungAcSectionLength] = _.raw[i]; // extended_state[8] seems special. This is a guess on how to calculate it. extended_state[8] = (extended_state[1] & 0x9F) | 0x40; // Send it. _irsend.sendSamsungAC(extended_state, kSamsungAcExtendedStateLength, repeat); } /// Send the special extended "On" message as the library can't seem to /// reproduce this message automatically. /// @param[in] repeat Nr. of times the message will be repeated. /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/604#issuecomment-475020036 void IRSamsungAc::sendOn(const uint16_t repeat) { const uint8_t extended_state[21] = { 0x02, 0x92, 0x0F, 0x00, 0x00, 0x00, 0xF0, 0x01, 0xD2, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x01, 0xE2, 0xFE, 0x71, 0x80, 0x11, 0xF0}; _irsend.sendSamsungAC(extended_state, kSamsungAcExtendedStateLength, repeat); _lastsentpowerstate = true; // On } /// Send the special extended "Off" message as the library can't seem to /// reproduce this message automatically. /// @param[in] repeat Nr. of times the message will be repeated. /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/604#issuecomment-475020036 void IRSamsungAc::sendOff(const uint16_t repeat) { const uint8_t extended_state[21] = { 0x02, 0xB2, 0x0F, 0x00, 0x00, 0x00, 0xC0, 0x01, 0xD2, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x01, 0x02, 0xFF, 0x71, 0x80, 0x11, 0xC0}; _irsend.sendSamsungAC(extended_state, kSamsungAcExtendedStateLength, repeat); _lastsentpowerstate = false; // Off } #endif // SEND_SAMSUNG_AC /// Get a PTR to the internal state/code for this protocol. /// @return PTR to a code for this protocol based on the current internal state. uint8_t *IRSamsungAc::getRaw(void) { checksum(); return _.raw; } /// Set the internal state from a valid code for this protocol. /// @param[in] new_code A valid code for this protocol. /// @param[in] length The length/size of the new_code array. void IRSamsungAc::setRaw(const uint8_t new_code[], const uint16_t length) { std::memcpy(_.raw, new_code, std::min(length, kSamsungAcExtendedStateLength)); // Shrink the extended state into a normal state. if (length > kSamsungAcStateLength) { for (uint8_t i = kSamsungAcStateLength; i < length; i++) _.raw[i - kSamsungAcSectionLength] = _.raw[i]; } } /// Set the requested power state of the A/C to on. void IRSamsungAc::on(void) { setPower(true); } /// Set the requested power state of the A/C to off. void IRSamsungAc::off(void) { setPower(false); } /// Change the power setting. /// @param[in] on true, the setting is on. false, the setting is off. void IRSamsungAc::setPower(const bool on) { _.Power1 = !on; // Cleared when on. _.Power6 = (on ? 0b11 : 0b00); } /// Get the value of the current power setting. /// @return true, the setting is on. false, the setting is off. bool IRSamsungAc::getPower(void) const { return (_.Power6 == 0b11) && !_.Power1; } /// Set the temperature. /// @param[in] temp The temperature in degrees celsius. void IRSamsungAc::setTemp(const uint8_t temp) { uint8_t newtemp = std::max(kSamsungAcMinTemp, temp); newtemp = std::min(kSamsungAcMaxTemp, newtemp); _.Temp = newtemp - kSamsungAcMinTemp; } /// Get the current temperature setting. /// @return The current setting for temp. in degrees celsius. uint8_t IRSamsungAc::getTemp(void) const { return _.Temp + kSamsungAcMinTemp; } /// Set the operating mode of the A/C. /// @param[in] mode The desired operating mode. void IRSamsungAc::setMode(const uint8_t mode) { // If we get an unexpected mode, default to AUTO. uint8_t newmode = mode; if (newmode > kSamsungAcHeat) newmode = kSamsungAcAuto; _.Mode = newmode; // Auto mode has a special fan setting valid only in auto mode. if (newmode == kSamsungAcAuto) { _.Fan = kSamsungAcFanAuto2; } else { // Non-Auto can't have this fan setting if (_.Fan == kSamsungAcFanAuto2) _.Fan = kSamsungAcFanAuto; // Default to something safe. } } /// Get the operating mode setting of the A/C. /// @return The current operating mode setting. uint8_t IRSamsungAc::getMode(void) const { return _.Mode; } /// Set the speed of the fan. /// @param[in] speed The desired setting. void IRSamsungAc::setFan(const uint8_t speed) { switch (speed) { case kSamsungAcFanAuto: case kSamsungAcFanLow: case kSamsungAcFanMed: case kSamsungAcFanHigh: case kSamsungAcFanTurbo: if (_.Mode == kSamsungAcAuto) return; // Not valid in Auto mode. break; case kSamsungAcFanAuto2: // Special fan setting for when in Auto mode. if (_.Mode != kSamsungAcAuto) return; break; default: return; } _.Fan = speed; } /// Get the current fan speed setting. /// @return The current fan speed/mode. uint8_t IRSamsungAc::getFan(void) const { return _.Fan; } /// Get the vertical swing setting of the A/C. /// @return true, the setting is on. false, the setting is off. /// @todo (Hollako) Explain why sometimes the LSB of remote_state[9] is a 1. /// e.g. 0xAE or 0XAF for swing move. bool IRSamsungAc::getSwing(void) const { return _.Swing == kSamsungAcSwingMove; } /// Set the vertical swing setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. /// @todo (Hollako) Explain why sometimes the LSB of remote_state[9] is a 1. /// e.g. 0xAE or 0XAF for swing move. void IRSamsungAc::setSwing(const bool on) { _.Swing = (on ? kSamsungAcSwingMove : kSamsungAcSwingStop); } /// Get the Beep setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRSamsungAc::getBeep(void) const { return _.Beep; } /// Set the Beep setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRSamsungAc::setBeep(const bool on) { _.Beep = on; } /// Get the Clean setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRSamsungAc::getClean(void) const { return _.Clean10 && _.Clean11; } /// Set the Clean setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRSamsungAc::setClean(const bool on) { _.Clean10 = on; _.Clean11 = on; } /// Get the Quiet setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRSamsungAc::getQuiet(void) const { return !_.Quiet1 && _.Quiet5; } /// Set the Quiet setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRSamsungAc::setQuiet(const bool on) { _.Quiet1 = !on; // Cleared when on. _.Quiet5 = on; if (on) { // Quiet mode seems to set fan speed to auto. setFan(kSamsungAcFanAuto); setPowerful(false); // Quiet 'on' is mutually exclusive to Powerful. } } /// Get the Powerful (Turbo) setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRSamsungAc::getPowerful(void) const { return !(_.Powerful8 & kSamsungAcPowerfulMask8) && (_.Powerful10 == kSamsungAcPowerful10On) && (_.Fan == kSamsungAcFanTurbo); } /// Set the Powerful (Turbo) setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRSamsungAc::setPowerful(const bool on) { uint8_t off_value = getBreeze() ? kSamsungAcBreezeOn : 0b000; _.Powerful10 = (on ? kSamsungAcPowerful10On : off_value); if (on) { _.Powerful8 &= ~kSamsungAcPowerfulMask8; // Bit needs to be cleared. // Powerful mode sets fan speed to Turbo. setFan(kSamsungAcFanTurbo); setQuiet(false); // Powerful 'on' is mutually exclusive to Quiet. } else { _.Powerful8 |= kSamsungAcPowerfulMask8; // Bit needs to be set. // Turning off Powerful mode sets fan speed to Auto if we were in Turbo mode if (_.Fan == kSamsungAcFanTurbo) setFan(kSamsungAcFanAuto); } } /// Are the vanes closed over the fan outlet, to stop direct wind? Aka. WindFree /// @return true, the setting is on. false, the setting is off. /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1062 bool IRSamsungAc::getBreeze(void) const { return (_.Breeze == kSamsungAcBreezeOn) && (_.Fan == kSamsungAcFanAuto && !getSwing()); } /// Closes the vanes over the fan outlet, to stop direct wind. Aka. WindFree /// @param[in] on true, the setting is on. false, the setting is off. /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1062 void IRSamsungAc::setBreeze(const bool on) { uint8_t off_value = getPowerful() ? kSamsungAcPowerful10On : 0b000; _.Breeze = (on ? kSamsungAcBreezeOn : off_value); if (on) { setFan(kSamsungAcFanAuto); setSwing(false); } } /// Get the Display (Light/LED) setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRSamsungAc::getDisplay(void) const { return _.Display; } /// Set the Display (Light/LED) setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRSamsungAc::setDisplay(const bool on) { _.Display = on; } /// Get the Ion (Filter) setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRSamsungAc::getIon(void) const { return _.Ion; } /// Set the Ion (Filter) setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRSamsungAc::setIon(const bool on) { _.Ion = on; } /// Convert a stdAc::opmode_t enum into its native mode. /// @param[in] mode The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRSamsungAc::convertMode(const stdAc::opmode_t mode) { switch (mode) { case stdAc::opmode_t::kCool: return kSamsungAcCool; case stdAc::opmode_t::kHeat: return kSamsungAcHeat; case stdAc::opmode_t::kDry: return kSamsungAcDry; case stdAc::opmode_t::kFan: return kSamsungAcFan; default: return kSamsungAcAuto; } } /// Convert a stdAc::fanspeed_t enum into it's native speed. /// @param[in] speed The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRSamsungAc::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: case stdAc::fanspeed_t::kLow: return kSamsungAcFanLow; case stdAc::fanspeed_t::kMedium: return kSamsungAcFanMed; case stdAc::fanspeed_t::kHigh: return kSamsungAcFanHigh; case stdAc::fanspeed_t::kMax: return kSamsungAcFanTurbo; default: return kSamsungAcFanAuto; } } /// Convert a native mode into its stdAc equivalent. /// @param[in] mode The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::opmode_t IRSamsungAc::toCommonMode(const uint8_t mode) { switch (mode) { case kSamsungAcCool: return stdAc::opmode_t::kCool; case kSamsungAcHeat: return stdAc::opmode_t::kHeat; case kSamsungAcDry: return stdAc::opmode_t::kDry; case kSamsungAcFan: return stdAc::opmode_t::kFan; default: return stdAc::opmode_t::kAuto; } } /// Convert a native fan speed into its stdAc equivalent. /// @param[in] spd The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::fanspeed_t IRSamsungAc::toCommonFanSpeed(const uint8_t spd) { switch (spd) { case kSamsungAcFanTurbo: return stdAc::fanspeed_t::kMax; case kSamsungAcFanHigh: return stdAc::fanspeed_t::kHigh; case kSamsungAcFanMed: return stdAc::fanspeed_t::kMedium; case kSamsungAcFanLow: return stdAc::fanspeed_t::kMin; default: return stdAc::fanspeed_t::kAuto; } } /// Convert the current internal state into its stdAc::state_t equivalent. /// @return The stdAc equivalent of the native settings. stdAc::state_t IRSamsungAc::toCommon(void) const { stdAc::state_t result; result.protocol = decode_type_t::SAMSUNG_AC; result.model = -1; // Not supported. result.power = getPower(); result.mode = toCommonMode(_.Mode); result.celsius = true; result.degrees = getTemp(); result.fanspeed = toCommonFanSpeed(_.Fan); result.swingv = getSwing() ? stdAc::swingv_t::kAuto : stdAc::swingv_t::kOff; result.quiet = getQuiet(); result.turbo = getPowerful(); result.clean = getClean(); result.beep = _.Beep; result.light = _.Display; result.filter = _.Ion; // Not supported. result.swingh = stdAc::swingh_t::kOff; result.econo = false; result.sleep = -1; result.clock = -1; return result; } /// Convert the current internal state into a human readable string. /// @return A human readable string. String IRSamsungAc::toString(void) const { String result = ""; result.reserve(115); // Reserve some heap for the string to reduce fragging. result += addBoolToString(getPower(), kPowerStr, false); result += addModeToString(_.Mode, kSamsungAcAuto, kSamsungAcCool, kSamsungAcHeat, kSamsungAcDry, kSamsungAcFan); result += addTempToString(getTemp()); result += addIntToString(_.Fan, kFanStr); result += kSpaceLBraceStr; switch (_.Fan) { case kSamsungAcFanAuto: case kSamsungAcFanAuto2: result += kAutoStr; break; case kSamsungAcFanLow: result += kLowStr; break; case kSamsungAcFanMed: result += kMedStr; break; case kSamsungAcFanHigh: result += kHighStr; break; case kSamsungAcFanTurbo: result += kTurboStr; break; default: result += kUnknownStr; break; } result += ')'; result += addBoolToString(getSwing(), kSwingStr); result += addBoolToString(_.Beep, kBeepStr); result += addBoolToString(getClean(), kCleanStr); result += addBoolToString(getQuiet(), kQuietStr); result += addBoolToString(getPowerful(), kPowerfulStr); result += addBoolToString(getBreeze(), kBreezeStr); result += addBoolToString(_.Display, kLightStr); result += addBoolToString(_.Ion, kIonStr); return result; } #if DECODE_SAMSUNG_AC /// Decode the supplied Samsung A/C message. /// Status: Stable / Known to be working. /// @param[in,out] results Ptr to the data to decode & where to store the result /// @param[in] offset The starting index to use when attempting to decode the /// raw data. Typically/Defaults to kStartOffset. /// @param[in] nbits The number of data bits to expect. /// @param[in] strict Flag indicating if we should perform strict matching. /// @return True if it can decode it, false if it can't. /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/505 bool IRrecv::decodeSamsungAC(decode_results *results, uint16_t offset, const uint16_t nbits, const bool strict) { if (results->rawlen < 2 * nbits + kHeader * 3 + kFooter * 2 - 1 + offset) return false; // Can't possibly be a valid Samsung A/C message. if (nbits != kSamsungAcBits && nbits != kSamsungAcExtendedBits) return false; // Message Header if (!matchMark(results->rawbuf[offset++], kSamsungAcBitMark)) return false; if (!matchSpace(results->rawbuf[offset++], kSamsungAcHdrSpace)) return false; // Section(s) for (uint16_t pos = 0; pos <= (nbits / 8) - kSamsungAcSectionLength; pos += kSamsungAcSectionLength) { uint16_t used; // Section Header + Section Data (7 bytes) + Section Footer used = matchGeneric(results->rawbuf + offset, results->state + pos, results->rawlen - offset, kSamsungAcSectionLength * 8, kSamsungAcSectionMark, kSamsungAcSectionSpace, kSamsungAcBitMark, kSamsungAcOneSpace, kSamsungAcBitMark, kSamsungAcZeroSpace, kSamsungAcBitMark, kSamsungAcSectionGap, pos + kSamsungAcSectionLength >= nbits / 8, _tolerance, 0, false); if (used == 0) return false; offset += used; } // Compliance // Is the signature correct? DPRINTLN("DEBUG: Checking signature."); if (results->state[0] != 0x02 || results->state[2] != 0x0F) return false; if (strict) { // Is the checksum valid? if (!IRSamsungAc::validChecksum(results->state, nbits / 8)) { DPRINTLN("DEBUG: Checksum failed!"); return false; } } // Success results->decode_type = SAMSUNG_AC; results->bits = nbits; // No need to record the state as we stored it as we decoded it. // As we use result->state, we don't record value, address, or command as it // is a union data type. return true; } #endif // DECODE_SAMSUNG_AC