/*-------------------------------------------------------------------------
NeoPixel library helper functions for Esp8266 UART hardware
Written by Michael C. Miller.
I invest time and resources providing this open source code,
please support me by dontating (see https://github.com/Makuna/NeoPixelBus)
-------------------------------------------------------------------------
This file is part of the Makuna/NeoPixelBus library.
NeoPixelBus is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
NeoPixelBus is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with NeoPixel. If not, see
.
-------------------------------------------------------------------------*/
#ifdef ARDUINO_ARCH_ESP8266
#include
#include "NeoSettings.h"
#include "NeoEsp8266UartMethod.h"
#include
extern "C"
{
#include
}
const volatile uint8_t* IRAM_ATTR NeoEsp8266UartContext::FillUartFifo(uint8_t uartNum,
const volatile uint8_t* start,
const volatile uint8_t* end)
{
// Remember: UARTs send less significant bit (LSB) first so
// pushing ABCDEF byte will generate a 0FEDCBA1 signal,
// including a LOW(0) start & a HIGH(1) stop bits.
// Also, we have configured UART to invert logic levels, so:
const uint8_t _uartData[4] = {
0b110111, // On wire: 1 000 100 0 [Neopixel reads 00]
0b000111, // On wire: 1 000 111 0 [Neopixel reads 01]
0b110100, // On wire: 1 110 100 0 [Neopixel reads 10]
0b000100, // On wire: 1 110 111 0 [NeoPixel reads 11]
};
uint8_t avail = (UART_TX_FIFO_SIZE - GetTxFifoLength(uartNum)) / 4;
if (end - start > avail)
{
end = start + avail;
}
while (start < end)
{
uint8_t subpix = *start++;
Enqueue(uartNum, _uartData[(subpix >> 6) & 0x3]);
Enqueue(uartNum, _uartData[(subpix >> 4) & 0x3]);
Enqueue(uartNum, _uartData[(subpix >> 2) & 0x3]);
Enqueue(uartNum, _uartData[subpix & 0x3]);
}
return start;
}
volatile NeoEsp8266UartInterruptContext* NeoEsp8266UartInterruptContext::s_uartInteruptContext[] = { nullptr, nullptr };
void NeoEsp8266UartInterruptContext::StartSending(uint8_t uartNum, uint8_t* start, uint8_t* end)
{
// send the pixels asynchronously
_asyncBuff = start;
_asyncBuffEnd = end;
// enable the transmit interrupt
USIE(uartNum) |= (1 << UIFE);
}
void NeoEsp8266UartInterruptContext::Attach(uint8_t uartNum)
{
// Disable all interrupts
ETS_UART_INTR_DISABLE();
// Clear the RX & TX FIFOS
const uint32_t fifoResetFlags = (1 << UCTXRST) | (1 << UCRXRST);
USC0(uartNum) |= fifoResetFlags;
USC0(uartNum) &= ~(fifoResetFlags);
// attach the ISR if needed
if (s_uartInteruptContext[0] == nullptr &&
s_uartInteruptContext[1] == nullptr)
{
ETS_UART_INTR_ATTACH(Isr, s_uartInteruptContext);
}
// attach the context
s_uartInteruptContext[uartNum] = this;
// Set tx fifo trigger. 80 bytes gives us 200 microsecs to refill the FIFO
USC1(uartNum) = (80 << UCFET);
// Disable RX & TX interrupts. It maybe still enabled by uart.c in the SDK
USIE(uartNum) &= ~((1 << UIFF) | (1 << UIFE));
// Clear all pending interrupts in UART1
USIC(uartNum) = 0xffff;
// Reenable interrupts
ETS_UART_INTR_ENABLE();
}
void NeoEsp8266UartInterruptContext::Detach(uint8_t uartNum)
{
// Disable interrupts
ETS_UART_INTR_DISABLE();
if (s_uartInteruptContext[uartNum] != nullptr)
{
// turn off uart
USC1(uartNum) = 0;
USIC(uartNum) = 0xffff;
USIE(uartNum) = 0;
s_uartInteruptContext[uartNum] = nullptr;
if (s_uartInteruptContext[0] == nullptr &&
s_uartInteruptContext[1] == nullptr)
{
// detach our ISR
ETS_UART_INTR_ATTACH(NULL, NULL);
// return so we don't enable interrupts since there is no ISR anymore
return;
}
}
// Reenable interrupts
ETS_UART_INTR_ENABLE();
}
void IRAM_ATTR NeoEsp8266UartInterruptContext::Isr(void* param)
{
// make sure this is for us
if (param == s_uartInteruptContext)
{
// Interrupt handler is shared between UART0 & UART1
// so we need to test for both
for (uint8_t uartNum = 0; uartNum < 2; uartNum++)
{
if (USIS(uartNum) && s_uartInteruptContext[uartNum] != nullptr)
{
// Fill the FIFO with new data
s_uartInteruptContext[uartNum]->_asyncBuff = FillUartFifo(
uartNum,
s_uartInteruptContext[uartNum]->_asyncBuff,
s_uartInteruptContext[uartNum]->_asyncBuffEnd);
// Disable TX interrupt when done
if (s_uartInteruptContext[uartNum]->_asyncBuff == s_uartInteruptContext[uartNum]->_asyncBuffEnd)
{
// clear the TX FIFO Empty
USIE(uartNum) &= ~(1 << UIFE);
}
// Clear all interrupts flags (just in case)
USIC(uartNum) = 0xffff;
}
}
}
}
#endif