// Copyright 2019 Fabien Valthier /// @file /// @brief Support for Teco protocols. #include "ir_Teco.h" #include #include "IRremoteESP8266.h" #include "IRtext.h" #include "IRutils.h" #ifndef ARDUINO #include #endif // Constants // using SPACE modulation. const uint16_t kTecoHdrMark = 9000; const uint16_t kTecoHdrSpace = 4440; const uint16_t kTecoBitMark = 620; const uint16_t kTecoOneSpace = 1650; const uint16_t kTecoZeroSpace = 580; const uint32_t kTecoGap = kDefaultMessageGap; // Made-up value. Just a guess. using irutils::addBoolToString; using irutils::addFanToString; using irutils::addIntToString; using irutils::addLabeledString; using irutils::addModeToString; using irutils::addTempToString; #if SEND_TECO /// Send a Teco A/C message. /// Status: Beta / Probably working. /// @param[in] data The message to be sent. /// @param[in] nbits The number of bits of message to be sent. /// @param[in] repeat The number of times the command is to be repeated. void IRsend::sendTeco(const uint64_t data, const uint16_t nbits, const uint16_t repeat) { sendGeneric(kTecoHdrMark, kTecoHdrSpace, kTecoBitMark, kTecoOneSpace, kTecoBitMark, kTecoZeroSpace, kTecoBitMark, kTecoGap, data, nbits, 38000, false, repeat, kDutyDefault); } #endif // SEND_TECO /// Class constructor /// @param[in] pin GPIO to be used when sending. /// @param[in] inverted Is the output signal to be inverted? /// @param[in] use_modulation Is frequency modulation to be used? IRTecoAc::IRTecoAc(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { stateReset(); } /// Set up hardware to be able to send a message. void IRTecoAc::begin(void) { _irsend.begin(); } #if SEND_TECO /// Send the current internal state as an IR message. /// @param[in] repeat Nr. of times the message will be repeated. void IRTecoAc::send(const uint16_t repeat) { _irsend.sendTeco(_.raw, kTecoBits, repeat); } #endif // SEND_TECO /// Reset the internal state of the emulation. /// @note Mode:auto, Power:Off, fan:auto, temp:16, swing:off, sleep:off void IRTecoAc::stateReset(void) { _.raw = kTecoReset; } /// Get a copy of the internal state/code for this protocol. /// @return A code for this protocol based on the current internal state. uint64_t IRTecoAc::getRaw(void) const { return _.raw; } /// Set the internal state from a valid code for this protocol. /// @param[in] new_code A valid code for this protocol. void IRTecoAc::setRaw(const uint64_t new_code) { _.raw = new_code; } /// Set the requested power state of the A/C to on. void IRTecoAc::on(void) { setPower(true); } /// Set the requested power state of the A/C to off. void IRTecoAc::off(void) { setPower(false); } /// Change the power setting. /// @param[in] on true, the setting is on. false, the setting is off. void IRTecoAc::setPower(const bool on) { _.Power = on; } /// Get the value of the current power setting. /// @return true, the setting is on. false, the setting is off. bool IRTecoAc::getPower(void) const { return _.Power; } /// Set the temperature. /// @param[in] temp The temperature in degrees celsius. void IRTecoAc::setTemp(const uint8_t temp) { uint8_t newtemp = temp; newtemp = std::min(newtemp, kTecoMaxTemp); newtemp = std::max(newtemp, kTecoMinTemp); _.Temp = newtemp - kTecoMinTemp; } /// Get the current temperature setting. /// @return The current setting for temp. in degrees celsius. uint8_t IRTecoAc::getTemp(void) const { return _.Temp + kTecoMinTemp; } /// Set the speed of the fan. /// @param[in] speed The desired setting. void IRTecoAc::setFan(const uint8_t speed) { uint8_t newspeed = speed; switch (speed) { case kTecoFanAuto: case kTecoFanHigh: case kTecoFanMed: case kTecoFanLow: break; default: newspeed = kTecoFanAuto; } _.Fan = newspeed; } /// Get the current fan speed setting. /// @return The current fan speed/mode. uint8_t IRTecoAc::getFan(void) const { return _.Fan; } /// Set the operating mode of the A/C. /// @param[in] mode The desired operating mode. void IRTecoAc::setMode(const uint8_t mode) { uint8_t newmode = mode; switch (mode) { case kTecoAuto: case kTecoCool: case kTecoDry: case kTecoFan: case kTecoHeat: break; default: newmode = kTecoAuto; } _.Mode = newmode; } /// Get the operating mode setting of the A/C. /// @return The current operating mode setting. uint8_t IRTecoAc::getMode(void) const { return _.Mode; } /// Set the (vertical) swing setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRTecoAc::setSwing(const bool on) { _.Swing = on; } /// Get the (vertical) swing setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRTecoAc::getSwing(void) const { return _.Swing; } /// Set the Sleep setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRTecoAc::setSleep(const bool on) { _.Sleep = on; } /// Get the Sleep setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRTecoAc::getSleep(void) const { return _.Sleep; } /// Set the Light (LED/Display) setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRTecoAc::setLight(const bool on) { _.Light = on; } /// Get the Light (LED/Display) setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRTecoAc::getLight(void) const { return _.Light; } /// Set the Humid setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRTecoAc::setHumid(const bool on) { _.Humid = on; } /// Get the Humid setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRTecoAc::getHumid(void) const { return _.Humid; } /// Set the Save setting of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRTecoAc::setSave(const bool on) { _.Save = on; } /// Get the Save setting of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRTecoAc::getSave(void) const { return _.Save; } /// Is the timer function enabled? /// @return true, the setting is on. false, the setting is off. inline bool IRTecoAc::getTimerEnabled(void) const { return _.TimerOn; } /// Get the timer time for when the A/C unit will switch power state. /// @return The number of minutes left on the timer. `0` means off. uint16_t IRTecoAc::getTimer(void) const { uint16_t mins = 0; if (getTimerEnabled()) { mins = (_.TensHours * 10 + _.UnitHours) * 60; if (_.HalfHour) mins += 30; } return mins; } /// Set the timer for when the A/C unit will switch power state. /// @param[in] nr_mins Number of minutes before power state change. /// `0` will clear the timer. Max is 24 hrs. /// @note Time is stored internally in increments of 30 mins. void IRTecoAc::setTimer(const uint16_t nr_mins) { uint16_t mins = std::min(nr_mins, (uint16_t)(24 * 60)); // Limit to 24 hrs. uint8_t hours = mins / 60; _.TimerOn = mins > 0; // Set the timer flag. _.HalfHour = (mins % 60) >= 30; _.UnitHours = hours % 10; _.TensHours = hours / 10; } /// Convert a stdAc::opmode_t enum into its native mode. /// @param[in] mode The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRTecoAc::convertMode(const stdAc::opmode_t mode) { switch (mode) { case stdAc::opmode_t::kCool: return kTecoCool; case stdAc::opmode_t::kHeat: return kTecoHeat; case stdAc::opmode_t::kDry: return kTecoDry; case stdAc::opmode_t::kFan: return kTecoFan; default: return kTecoAuto; } } /// Convert a stdAc::fanspeed_t enum into it's native speed. /// @param[in] speed The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRTecoAc::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: case stdAc::fanspeed_t::kLow: return kTecoFanLow; case stdAc::fanspeed_t::kMedium: return kTecoFanMed; case stdAc::fanspeed_t::kHigh: case stdAc::fanspeed_t::kMax: return kTecoFanHigh; default: return kTecoFanAuto; } } /// Convert a native mode into its stdAc equivalent. /// @param[in] mode The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::opmode_t IRTecoAc::toCommonMode(const uint8_t mode) { switch (mode) { case kTecoCool: return stdAc::opmode_t::kCool; case kTecoHeat: return stdAc::opmode_t::kHeat; case kTecoDry: return stdAc::opmode_t::kDry; case kTecoFan: return stdAc::opmode_t::kFan; default: return stdAc::opmode_t::kAuto; } } /// Convert a native fan speed into its stdAc equivalent. /// @param[in] speed The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::fanspeed_t IRTecoAc::toCommonFanSpeed(const uint8_t speed) { switch (speed) { case kTecoFanHigh: return stdAc::fanspeed_t::kMax; case kTecoFanMed: return stdAc::fanspeed_t::kMedium; case kTecoFanLow: return stdAc::fanspeed_t::kMin; default: return stdAc::fanspeed_t::kAuto; } } /// Convert the current internal state into its stdAc::state_t equivalent. /// @return The stdAc equivalent of the native settings. stdAc::state_t IRTecoAc::toCommon(void) const { stdAc::state_t result; result.protocol = decode_type_t::TECO; result.model = -1; // Not supported. result.power = _.Power; result.mode = toCommonMode(_.Mode); result.celsius = true; result.degrees = getTemp(); result.fanspeed = toCommonFanSpeed(_.Fan); result.swingv = _.Swing ? stdAc::swingv_t::kAuto : stdAc::swingv_t::kOff; result.sleep = _.Sleep ? 0 : -1; result.light = _.Light; // Not supported. result.swingh = stdAc::swingh_t::kOff; result.turbo = false; result.filter = false; result.econo = false; result.quiet = false; result.clean = false; result.beep = false; result.clock = -1; return result; } /// Convert the current internal state into a human readable string. /// @return A human readable string. String IRTecoAc::toString(void) const { String result = ""; result.reserve(100); // Reserve some heap for the string to reduce fragging. result += addBoolToString(_.Power, kPowerStr, false); result += addModeToString(_.Mode, kTecoAuto, kTecoCool, kTecoHeat, kTecoDry, kTecoFan); result += addTempToString(getTemp()); result += addFanToString(_.Fan, kTecoFanHigh, kTecoFanLow, kTecoFanAuto, kTecoFanAuto, kTecoFanMed); result += addBoolToString(_.Sleep, kSleepStr); result += addBoolToString(_.Swing, kSwingStr); result += addBoolToString(_.Light, kLightStr); result += addBoolToString(_.Humid, kHumidStr); result += addBoolToString(_.Save, kSaveStr); if (getTimerEnabled()) result += addLabeledString(irutils::minsToString(getTimer()), kTimerStr); else result += addBoolToString(false, kTimerStr); return result; } #if DECODE_TECO /// Decode the supplied Teco message. /// Status: STABLE / Tested. /// @param[in,out] results Ptr to the data to decode & where to store the result /// @param[in] offset The starting index to use when attempting to decode the /// raw data. Typically/Defaults to kStartOffset. /// @param[in] nbits The number of data bits to expect. /// @param[in] strict Flag indicating if we should perform strict matching. /// @return True if it can decode it, false if it can't. bool IRrecv::decodeTeco(decode_results* results, uint16_t offset, const uint16_t nbits, const bool strict) { if (strict && nbits != kTecoBits) return false; // Not what is expected uint64_t data = 0; // Match Header + Data + Footer if (!matchGeneric(results->rawbuf + offset, &data, results->rawlen - offset, nbits, kTecoHdrMark, kTecoHdrSpace, kTecoBitMark, kTecoOneSpace, kTecoBitMark, kTecoZeroSpace, kTecoBitMark, kTecoGap, true, _tolerance, kMarkExcess, false)) return false; // Success results->decode_type = TECO; results->bits = nbits; results->value = data; results->address = 0; results->command = 0; return true; } #endif // DECODE_TECO