// Copyright 2018, 2019 David Conran /// @file /// @brief Support for Electra A/C protocols. /// @see https://github.com/ToniA/arduino-heatpumpir/blob/master/AUXHeatpumpIR.cpp /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/527 /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/642 /// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/778 #include "ir_Electra.h" #include #include #include "IRrecv.h" #include "IRsend.h" #include "IRtext.h" #include "IRutils.h" // Constants const uint16_t kElectraAcHdrMark = 9166; const uint16_t kElectraAcBitMark = 646; const uint16_t kElectraAcHdrSpace = 4470; const uint16_t kElectraAcOneSpace = 1647; const uint16_t kElectraAcZeroSpace = 547; const uint32_t kElectraAcMessageGap = kDefaultMessageGap; // Just a guess. using irutils::addBoolToString; using irutils::addIntToString; using irutils::addLabeledString; using irutils::addModeToString; using irutils::addFanToString; using irutils::addTempToString; #if SEND_ELECTRA_AC /// Send a Electra A/C formatted message. /// Status: Alpha / Needs testing against a real device. /// @param[in] data The message to be sent. /// @note Guessing MSBF order. /// @param[in] nbytes The number of bytes of message to be sent. /// @param[in] repeat The number of times the command is to be repeated. void IRsend::sendElectraAC(const uint8_t data[], const uint16_t nbytes, const uint16_t repeat) { for (uint16_t r = 0; r <= repeat; r++) sendGeneric(kElectraAcHdrMark, kElectraAcHdrSpace, kElectraAcBitMark, kElectraAcOneSpace, kElectraAcBitMark, kElectraAcZeroSpace, kElectraAcBitMark, kElectraAcMessageGap, data, nbytes, 38000, // Complete guess of the modulation frequency. false, // Send data in LSB order per byte 0, 50); } #endif /// Class constructor. /// @param[in] pin GPIO to be used when sending. /// @param[in] inverted Is the output signal to be inverted? /// @param[in] use_modulation Is frequency modulation to be used? IRElectraAc::IRElectraAc(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { stateReset(); } /// Reset the internal state to a fixed known good state. void IRElectraAc::stateReset(void) { for (uint8_t i = 1; i < kElectraAcStateLength - 2; i++) _.raw[i] = 0; _.raw[0] = 0xC3; _.LightToggle = kElectraAcLightToggleOff; // [12] is the checksum. } /// Set up hardware to be able to send a message. void IRElectraAc::begin(void) { _irsend.begin(); } /// Calculate the checksum for a given state. /// @param[in] state The value to calc the checksum of. /// @param[in] length The length of the state array. /// @return The calculated checksum stored in a uint_8. uint8_t IRElectraAc::calcChecksum(const uint8_t state[], const uint16_t length) { if (length == 0) return state[0]; return sumBytes(state, length - 1); } /// Verify the checksum is valid for a given state. /// @param[in] state The state to verify the checksum of. /// @param[in] length The length of the state array. /// @return true, if the state has a valid checksum. Otherwise, false. bool IRElectraAc::validChecksum(const uint8_t state[], const uint16_t length) { if (length < 2) return true; // No checksum to compare with. Assume okay. return (state[length - 1] == calcChecksum(state, length)); } /// Calculate and set the checksum values for the internal state. /// @param[in] length The length of the state array. void IRElectraAc::checksum(uint16_t length) { if (length < 2) return; _.Sum = calcChecksum(_.raw, length); } #if SEND_ELECTRA_AC /// Send the current internal state as an IR message. /// @param[in] repeat Nr. of times the message will be repeated. void IRElectraAc::send(const uint16_t repeat) { _irsend.sendElectraAC(getRaw(), kElectraAcStateLength, repeat); } #endif // SEND_ELECTRA_AC /// Get a PTR to the internal state/code for this protocol. /// @return PTR to a code for this protocol based on the current internal state. uint8_t *IRElectraAc::getRaw(void) { checksum(); return _.raw; } /// Set the internal state from a valid code for this protocol. /// @param[in] new_code A valid code for this protocol. /// @param[in] length The length of the code array. void IRElectraAc::setRaw(const uint8_t new_code[], const uint16_t length) { std::memcpy(_.raw, new_code, std::min(length, kElectraAcStateLength)); } /// Change the power setting to On. void IRElectraAc::on(void) { setPower(true); } /// Change the power setting to Off. void IRElectraAc::off(void) { setPower(false); } /// Change the power setting. /// @param[in] on true, the setting is on. false, the setting is off. void IRElectraAc::setPower(const bool on) { _.Power = on; } /// Get the value of the current power setting. /// @return true, the setting is on. false, the setting is off. bool IRElectraAc::getPower(void) const { return _.Power; } /// Set the operating mode of the A/C. /// @param[in] mode The desired operating mode. void IRElectraAc::setMode(const uint8_t mode) { switch (mode) { case kElectraAcAuto: case kElectraAcDry: case kElectraAcCool: case kElectraAcHeat: case kElectraAcFan: _.Mode = mode; break; default: // If we get an unexpected mode, default to AUTO. _.Mode = kElectraAcAuto; } } /// Get the operating mode setting of the A/C. /// @return The current operating mode setting. uint8_t IRElectraAc::getMode(void) const { return _.Mode; } /// Convert a stdAc::opmode_t enum into its native mode. /// @param[in] mode The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRElectraAc::convertMode(const stdAc::opmode_t mode) { switch (mode) { case stdAc::opmode_t::kCool: return kElectraAcCool; case stdAc::opmode_t::kHeat: return kElectraAcHeat; case stdAc::opmode_t::kDry: return kElectraAcDry; case stdAc::opmode_t::kFan: return kElectraAcFan; default: return kElectraAcAuto; } } /// Convert a native mode into its stdAc equivalent. /// @param[in] mode The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::opmode_t IRElectraAc::toCommonMode(const uint8_t mode) { switch (mode) { case kElectraAcCool: return stdAc::opmode_t::kCool; case kElectraAcHeat: return stdAc::opmode_t::kHeat; case kElectraAcDry: return stdAc::opmode_t::kDry; case kElectraAcFan: return stdAc::opmode_t::kFan; default: return stdAc::opmode_t::kAuto; } } /// Set the temperature. /// @param[in] temp The temperature in degrees celsius. void IRElectraAc::setTemp(const uint8_t temp) { uint8_t newtemp = std::max(kElectraAcMinTemp, temp); newtemp = std::min(kElectraAcMaxTemp, newtemp) - kElectraAcTempDelta; _.Temp = newtemp; } /// Get the current temperature setting. /// @return The current setting for temp. in degrees celsius. uint8_t IRElectraAc::getTemp(void) const { return _.Temp + kElectraAcTempDelta; } /// Set the speed of the fan. /// @param[in] speed The desired setting. /// @note 0 is auto, 1-3 is the speed void IRElectraAc::setFan(const uint8_t speed) { switch (speed) { case kElectraAcFanAuto: case kElectraAcFanHigh: case kElectraAcFanMed: case kElectraAcFanLow: _.Fan = speed; break; default: // If we get an unexpected speed, default to Auto. _.Fan = kElectraAcFanAuto; } } /// Get the current fan speed setting. /// @return The current fan speed. uint8_t IRElectraAc::getFan(void) const { return _.Fan; } /// Convert a stdAc::fanspeed_t enum into it's native speed. /// @param[in] speed The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRElectraAc::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: case stdAc::fanspeed_t::kLow: return kElectraAcFanLow; case stdAc::fanspeed_t::kMedium: return kElectraAcFanMed; case stdAc::fanspeed_t::kHigh: case stdAc::fanspeed_t::kMax: return kElectraAcFanHigh; default: return kElectraAcFanAuto; } } /// Convert a native fan speed into its stdAc equivalent. /// @param[in] speed The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::fanspeed_t IRElectraAc::toCommonFanSpeed(const uint8_t speed) { switch (speed) { case kElectraAcFanHigh: return stdAc::fanspeed_t::kMax; case kElectraAcFanMed: return stdAc::fanspeed_t::kMedium; case kElectraAcFanLow: return stdAc::fanspeed_t::kMin; default: return stdAc::fanspeed_t::kAuto; } } /// Set the Vertical Swing mode of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRElectraAc::setSwingV(const bool on) { _.SwingV = (on ? kElectraAcSwingOn : kElectraAcSwingOff); } /// Get the Vertical Swing mode of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRElectraAc::getSwingV(void) const { return !_.SwingV; } /// Set the Horizontal Swing mode of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRElectraAc::setSwingH(const bool on) { _.SwingH = (on ? kElectraAcSwingOn : kElectraAcSwingOff); } /// Get the Horizontal Swing mode of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRElectraAc::getSwingH(void) const { return !_.SwingH; } /// Set the Light (LED) Toggle mode of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRElectraAc::setLightToggle(const bool on) { _.LightToggle = (on ? kElectraAcLightToggleOn : kElectraAcLightToggleOff); } /// Get the Light (LED) Toggle mode of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRElectraAc::getLightToggle(void) const { return (_.LightToggle & kElectraAcLightToggleMask) == kElectraAcLightToggleMask; } /// Set the Clean mode of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRElectraAc::setClean(const bool on) { _.Clean = on; } /// Get the Clean mode of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRElectraAc::getClean(void) const { return _.Clean; } /// Set the Turbo mode of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRElectraAc::setTurbo(const bool on) { _.Turbo = on; } /// Get the Turbo mode of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRElectraAc::getTurbo(void) const { return _.Turbo; } /// Convert the current internal state into its stdAc::state_t equivalent. /// @return The stdAc equivalent of the native settings. stdAc::state_t IRElectraAc::toCommon(void) const { stdAc::state_t result; result.protocol = decode_type_t::ELECTRA_AC; result.power = _.Power; result.mode = toCommonMode(_.Mode); result.celsius = true; result.degrees = getTemp(); result.fanspeed = toCommonFanSpeed(_.Fan); result.swingv = getSwingV() ? stdAc::swingv_t::kAuto : stdAc::swingv_t::kOff; result.swingh = getSwingH() ? stdAc::swingh_t::kAuto : stdAc::swingh_t::kOff; result.light = getLightToggle(); result.turbo = _.Turbo; result.clean = _.Clean; // Not supported. result.model = -1; // No models used. result.quiet = false; result.econo = false; result.filter = false; result.beep = false; result.sleep = -1; result.clock = -1; return result; } /// Convert the current internal state into a human readable string. /// @return A human readable string. String IRElectraAc::toString(void) const { String result = ""; result.reserve(130); // Reserve some heap for the string to reduce fragging. result += addBoolToString(_.Power, kPowerStr, false); result += addModeToString(_.Mode, kElectraAcAuto, kElectraAcCool, kElectraAcHeat, kElectraAcDry, kElectraAcFan); result += addTempToString(getTemp()); result += addFanToString(_.Fan, kElectraAcFanHigh, kElectraAcFanLow, kElectraAcFanAuto, kElectraAcFanAuto, kElectraAcFanMed); result += addBoolToString(getSwingV(), kSwingVStr); result += addBoolToString(getSwingH(), kSwingHStr); result += addLabeledString(getLightToggle() ? kToggleStr : "-", kLightStr); result += addBoolToString(_.Clean, kCleanStr); result += addBoolToString(_.Turbo, kTurboStr); return result; } #if DECODE_ELECTRA_AC /// Decode the supplied Electra A/C message. /// Status: STABLE / Known working. /// @param[in,out] results Ptr to the data to decode & where to store the decode /// result. /// @param[in] offset The starting index to use when attempting to decode the /// raw data. Typically/Defaults to kStartOffset. /// @param[in] nbits The number of data bits to expect. /// @param[in] strict Flag indicating if we should perform strict matching. /// @return A boolean. True if it can decode it, false if it can't. bool IRrecv::decodeElectraAC(decode_results *results, uint16_t offset, const uint16_t nbits, const bool strict) { if (strict) { if (nbits != kElectraAcBits) return false; // Not strictly a ELECTRA_AC message. } // Match Header + Data + Footer if (!matchGeneric(results->rawbuf + offset, results->state, results->rawlen - offset, nbits, kElectraAcHdrMark, kElectraAcHdrSpace, kElectraAcBitMark, kElectraAcOneSpace, kElectraAcBitMark, kElectraAcZeroSpace, kElectraAcBitMark, kElectraAcMessageGap, true, _tolerance, 0, false)) return false; // Compliance if (strict) { // Verify the checksum. if (!IRElectraAc::validChecksum(results->state)) return false; } // Success results->decode_type = decode_type_t::ELECTRA_AC; results->bits = nbits; // No need to record the state as we stored it as we decoded it. // As we use result->state, we don't record value, address, or command as it // is a union data type. return true; } #endif // DECODE_ELECTRA_AC