// Copyright 2018, 2020 David Conran /// @file /// @brief Carrier protocols. /// @see CarrierAc https://github.com/crankyoldgit/IRremoteESP8266/issues/385 /// @see CarrierAc64 https://github.com/crankyoldgit/IRremoteESP8266/issues/1127 #include "ir_Carrier.h" #include #include "IRac.h" #include "IRrecv.h" #include "IRsend.h" #include "IRtext.h" #include "IRutils.h" using irutils::addBoolToString; using irutils::addIntToString; using irutils::addLabeledString; using irutils::addModeToString; using irutils::addTempToString; using irutils::addFanToString; using irutils::minsToString; using irutils::sumNibbles; // Constants const uint16_t kCarrierAcHdrMark = 8532; const uint16_t kCarrierAcHdrSpace = 4228; const uint16_t kCarrierAcBitMark = 628; const uint16_t kCarrierAcOneSpace = 1320; const uint16_t kCarrierAcZeroSpace = 532; const uint16_t kCarrierAcGap = 20000; const uint16_t kCarrierAcFreq = 38; // kHz. (An educated guess) const uint16_t kCarrierAc40HdrMark = 8402; const uint16_t kCarrierAc40HdrSpace = 4166; const uint16_t kCarrierAc40BitMark = 547; const uint16_t kCarrierAc40OneSpace = 1540; const uint16_t kCarrierAc40ZeroSpace = 497; const uint32_t kCarrierAc40Gap = 150000; ///< ///< @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1190#issuecomment-643380155 const uint16_t kCarrierAc64HdrMark = 8940; const uint16_t kCarrierAc64HdrSpace = 4556; const uint16_t kCarrierAc64BitMark = 503; const uint16_t kCarrierAc64OneSpace = 1736; const uint16_t kCarrierAc64ZeroSpace = 615; const uint32_t kCarrierAc64Gap = kDefaultMessageGap; // A guess. #if SEND_CARRIER_AC /// Send a Carrier HVAC formatted message. /// Status: STABLE / Works on real devices. /// @param[in] data The message to be sent. /// @param[in] nbits The number of bits of message to be sent. /// @param[in] repeat The number of times the command is to be repeated. void IRsend::sendCarrierAC(uint64_t data, uint16_t nbits, uint16_t repeat) { for (uint16_t r = 0; r <= repeat; r++) { uint64_t temp_data = data; // Carrier sends the data block three times. normal + inverted + normal. for (uint16_t i = 0; i < 3; i++) { sendGeneric(kCarrierAcHdrMark, kCarrierAcHdrSpace, kCarrierAcBitMark, kCarrierAcOneSpace, kCarrierAcBitMark, kCarrierAcZeroSpace, kCarrierAcBitMark, kCarrierAcGap, temp_data, nbits, 38, true, 0, kDutyDefault); temp_data = invertBits(temp_data, nbits); } } } #endif #if DECODE_CARRIER_AC /// Decode the supplied Carrier HVAC message. /// @note Carrier HVAC messages contain only 32 bits, but it is sent three(3) /// times. i.e. normal + inverted + normal /// Status: BETA / Probably works. /// @param[in,out] results Ptr to the data to decode & where to store the decode /// result. /// @param[in] offset The starting index to use when attempting to decode the /// raw data. Typically/Defaults to kStartOffset. /// @param[in] nbits The number of data bits to expect. /// @param[in] strict Flag indicating if we should perform strict matching. /// @return A boolean. True if it can decode it, false if it can't. bool IRrecv::decodeCarrierAC(decode_results *results, uint16_t offset, const uint16_t nbits, const bool strict) { if (results->rawlen < ((2 * nbits + kHeader + kFooter) * 3) - 1 + offset) return false; // Can't possibly be a valid Carrier message. if (strict && nbits != kCarrierAcBits) return false; // We expect Carrier to be 32 bits of message. uint64_t data = 0; uint64_t prev_data = 0; for (uint8_t i = 0; i < 3; i++) { prev_data = data; // Match Header + Data + Footer uint16_t used; used = matchGeneric(results->rawbuf + offset, &data, results->rawlen - offset, nbits, kCarrierAcHdrMark, kCarrierAcHdrSpace, kCarrierAcBitMark, kCarrierAcOneSpace, kCarrierAcBitMark, kCarrierAcZeroSpace, kCarrierAcBitMark, kCarrierAcGap, true); if (!used) return false; offset += used; // Compliance. if (strict) { // Check if the data is an inverted copy of the previous data. if (i > 0 && prev_data != invertBits(data, nbits)) return false; } } // Success results->bits = nbits; results->value = data; results->decode_type = CARRIER_AC; results->address = data >> 16; results->command = data & 0xFFFF; return true; } #endif // DECODE_CARRIER_AC #if SEND_CARRIER_AC40 /// Send a Carrier 40bit HVAC formatted message. /// Status: STABLE / Tested against a real device. /// @param[in] data The message to be sent. /// @param[in] nbits The bit size of the message being sent. /// @param[in] repeat The number of times the message is to be repeated. void IRsend::sendCarrierAC40(const uint64_t data, const uint16_t nbits, const uint16_t repeat) { sendGeneric(kCarrierAc40HdrMark, kCarrierAc40HdrSpace, kCarrierAc40BitMark, kCarrierAc40OneSpace, kCarrierAc40BitMark, kCarrierAc40ZeroSpace, kCarrierAc40BitMark, kCarrierAc40Gap, data, nbits, kCarrierAcFreq, true, repeat, kDutyDefault); } #endif // SEND_CARRIER_AC40 #if DECODE_CARRIER_AC40 /// Decode the supplied Carrier 40-bit HVAC message. /// Carrier HVAC messages contain only 40 bits, but it is sent three(3) times. /// Status: STABLE / Tested against a real device. /// @param[in,out] results Ptr to the data to decode & where to store the decode /// result. /// @param[in] offset The starting index to use when attempting to decode the /// raw data. Typically/Defaults to kStartOffset. /// @param[in] nbits The number of data bits to expect. /// @param[in] strict Flag indicating if we should perform strict matching. /// @return A boolean. True if it can decode it, false if it can't. bool IRrecv::decodeCarrierAC40(decode_results *results, uint16_t offset, const uint16_t nbits, const bool strict) { if (results->rawlen < 2 * nbits + kHeader + kFooter - 1 + offset) return false; // Can't possibly be a valid Carrier message. if (strict && nbits != kCarrierAc40Bits) return false; // We expect Carrier to be 40 bits of message. if (!matchGeneric(results->rawbuf + offset, &(results->value), results->rawlen - offset, nbits, kCarrierAc40HdrMark, kCarrierAc40HdrSpace, kCarrierAc40BitMark, kCarrierAc40OneSpace, kCarrierAc40BitMark, kCarrierAc40ZeroSpace, kCarrierAc40BitMark, kCarrierAc40Gap, true)) return false; // Success results->bits = nbits; results->decode_type = CARRIER_AC40; results->address = 0; results->command = 0; return true; } #endif // DECODE_CARRIER_AC40 #if SEND_CARRIER_AC64 /// Send a Carrier 64bit HVAC formatted message. /// Status: STABLE / Known to be working. /// @param[in] data The message to be sent. /// @param[in] nbits The bit size of the message being sent. /// @param[in] repeat The number of times the message is to be repeated. void IRsend::sendCarrierAC64(const uint64_t data, const uint16_t nbits, const uint16_t repeat) { sendGeneric(kCarrierAc64HdrMark, kCarrierAc64HdrSpace, kCarrierAc64BitMark, kCarrierAc64OneSpace, kCarrierAc64BitMark, kCarrierAc64ZeroSpace, kCarrierAc64BitMark, kCarrierAc64Gap, data, nbits, kCarrierAcFreq, false, repeat, kDutyDefault); } #endif // SEND_CARRIER_AC64 #if DECODE_CARRIER_AC64 /// Decode the supplied Carrier 64-bit HVAC message. /// Status: STABLE / Known to be working. /// @param[in,out] results Ptr to the data to decode & where to store the decode /// result. /// @param[in] offset The starting index to use when attempting to decode the /// raw data. Typically/Defaults to kStartOffset. /// @param[in] nbits The number of data bits to expect. /// @param[in] strict Flag indicating if we should perform strict matching. /// @return A boolean. True if it can decode it, false if it can't. bool IRrecv::decodeCarrierAC64(decode_results *results, uint16_t offset, const uint16_t nbits, const bool strict) { if (results->rawlen < 2 * nbits + kHeader + kFooter - 1 + offset) return false; // Can't possibly be a valid Carrier message. if (strict && nbits != kCarrierAc64Bits) return false; // We expect Carrier to be 64 bits of message. if (!matchGeneric(results->rawbuf + offset, &(results->value), results->rawlen - offset, nbits, kCarrierAc64HdrMark, kCarrierAc64HdrSpace, kCarrierAc64BitMark, kCarrierAc64OneSpace, kCarrierAc64BitMark, kCarrierAc64ZeroSpace, kCarrierAc64BitMark, kCarrierAc64Gap, true, kUseDefTol, kMarkExcess, false)) return false; // Compliance if (strict && !IRCarrierAc64::validChecksum(results->value)) return false; // Success results->bits = nbits; results->decode_type = CARRIER_AC64; results->address = 0; results->command = 0; return true; } #endif // DECODE_CARRIER_AC64 /// Class constructor. /// @param[in] pin GPIO to be used when sending. /// @param[in] inverted Is the output signal to be inverted? /// @param[in] use_modulation Is frequency modulation to be used? IRCarrierAc64::IRCarrierAc64(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { stateReset(); } /// Reset the internal state to a fixed known good state. /// @note The state is powered off. void IRCarrierAc64::stateReset(void) { _.raw = 0x109000002C2A5584; } /// Calculate the checksum for a given state. /// @param[in] state The value to calc the checksum of. /// @return The 4-bit checksum stored in a uint_8. uint8_t IRCarrierAc64::calcChecksum(const uint64_t state) { uint64_t data = GETBITS64(state, kCarrierAc64ChecksumOffset + kCarrierAc64ChecksumSize, kCarrierAc64Bits - (kCarrierAc64ChecksumOffset + kCarrierAc64ChecksumSize)); uint8_t result = 0; for (; data; data >>= 4) // Add each nibble together. result += GETBITS64(data, 0, 4); return result & 0xF; } /// Verify the checksum is valid for a given state. /// @param[in] state The array to verify the checksum of. /// @return true, if the state has a valid checksum. Otherwise, false. bool IRCarrierAc64::validChecksum(const uint64_t state) { // Validate the checksum of the given state. return (GETBITS64(state, kCarrierAc64ChecksumOffset, kCarrierAc64ChecksumSize) == calcChecksum(state)); } /// Calculate and set the checksum values for the internal state. void IRCarrierAc64::checksum(void) { _.Sum = calcChecksum(_.raw); } /// Set up hardware to be able to send a message. void IRCarrierAc64::begin(void) { _irsend.begin(); } #if SEND_CARRIER_AC64 /// Send the current internal state as an IR message. /// @param[in] repeat Nr. of times the message will be repeated. void IRCarrierAc64::send(const uint16_t repeat) { _irsend.sendCarrierAC64(getRaw(), kCarrierAc64Bits, repeat); } #endif // SEND_CARRIER_AC64 /// Get a copy of the internal state as a valid code for this protocol. /// @return A valid code for this protocol based on the current internal state. uint64_t IRCarrierAc64::getRaw(void) { checksum(); // Ensure correct settings before sending. return _.raw; } /// Set the internal state from a valid code for this protocol. /// @param[in] state A valid code for this protocol. void IRCarrierAc64::setRaw(const uint64_t state) { _.raw = state; } /// Set the temp in deg C. /// @param[in] temp The desired temperature in Celsius. void IRCarrierAc64::setTemp(const uint8_t temp) { uint8_t degrees = std::max(temp, kCarrierAc64MinTemp); degrees = std::min(degrees, kCarrierAc64MaxTemp); _.Temp = degrees - kCarrierAc64MinTemp; } /// Get the current temperature from the internal state. /// @return The current temperature in Celsius. uint8_t IRCarrierAc64::getTemp(void) const { return _.Temp + kCarrierAc64MinTemp; } /// Change the power setting. /// @param[in] on true, the setting is on. false, the setting is off. void IRCarrierAc64::setPower(const bool on) { _.Power = on; } /// Get the value of the current power setting. /// @return true, the setting is on. false, the setting is off. bool IRCarrierAc64::getPower(void) const { return _.Power; } /// Change the power setting to On. void IRCarrierAc64::on(void) { setPower(true); } /// Change the power setting to Off. void IRCarrierAc64::off(void) { setPower(false); } /// Get the operating mode setting of the A/C. /// @return The current operating mode setting. uint8_t IRCarrierAc64::getMode(void) const { return _.Mode; } /// Set the operating mode of the A/C. /// @param[in] mode The desired operating mode. void IRCarrierAc64::setMode(const uint8_t mode) { switch (mode) { case kCarrierAc64Heat: case kCarrierAc64Cool: case kCarrierAc64Fan: _.Mode = mode; return; default: _.Mode = kCarrierAc64Cool; } } /// Convert a standard A/C mode into its native mode. /// @param[in] mode A stdAc::opmode_t to be converted to it's native equivalent. /// @return The corresponding native mode. uint8_t IRCarrierAc64::convertMode(const stdAc::opmode_t mode) { switch (mode) { case stdAc::opmode_t::kHeat: return kCarrierAc64Heat; case stdAc::opmode_t::kFan: return kCarrierAc64Fan; default: return kCarrierAc64Cool; } } /// Convert a native mode to it's common stdAc::opmode_t equivalent. /// @param[in] mode A native operation mode to be converted. /// @return The corresponding common stdAc::opmode_t mode. stdAc::opmode_t IRCarrierAc64::toCommonMode(const uint8_t mode) { switch (mode) { case kCarrierAc64Heat: return stdAc::opmode_t::kHeat; case kCarrierAc64Fan: return stdAc::opmode_t::kFan; default: return stdAc::opmode_t::kCool; } } /// Get the current fan speed setting. /// @return The current fan speed. uint8_t IRCarrierAc64::getFan(void) const { return _.Fan; } /// Set the speed of the fan. /// @param[in] speed The desired setting. void IRCarrierAc64::setFan(const uint8_t speed) { if (speed > kCarrierAc64FanHigh) _.Fan = kCarrierAc64FanAuto; else _.Fan = speed; } /// Convert a stdAc::fanspeed_t enum into it's native speed. /// @param[in] speed The enum to be converted. /// @return The native equivalent of the enum. uint8_t IRCarrierAc64::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: case stdAc::fanspeed_t::kLow: return kCarrierAc64FanLow; case stdAc::fanspeed_t::kMedium: return kCarrierAc64FanMedium; case stdAc::fanspeed_t::kHigh: case stdAc::fanspeed_t::kMax: return kCarrierAc64FanHigh; default: return kCarrierAc64FanAuto; } } /// Convert a native fan speed into its stdAc equivalent. /// @param[in] speed The native setting to be converted. /// @return The stdAc equivalent of the native setting. stdAc::fanspeed_t IRCarrierAc64::toCommonFanSpeed(const uint8_t speed) { switch (speed) { case kCarrierAc64FanHigh: return stdAc::fanspeed_t::kHigh; case kCarrierAc64FanMedium: return stdAc::fanspeed_t::kMedium; case kCarrierAc64FanLow: return stdAc::fanspeed_t::kLow; default: return stdAc::fanspeed_t::kAuto; } } /// Set the Vertical Swing mode of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRCarrierAc64::setSwingV(const bool on) { _.SwingV = on; } /// Get the Vertical Swing mode of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRCarrierAc64::getSwingV(void) const { return _.SwingV; } /// Set the Sleep mode of the A/C. /// @param[in] on true, the setting is on. false, the setting is off. void IRCarrierAc64::setSleep(const bool on) { if (on) { // Sleep sets a default value in the Off timer, and disables both timers. setOffTimer(2 * 60); // Clear the enable bits for each timer. _cancelOnTimer(); _cancelOffTimer(); } _.Sleep = on; } /// Get the Sleep mode of the A/C. /// @return true, the setting is on. false, the setting is off. bool IRCarrierAc64::getSleep(void) const { return _.Sleep; } /// Clear the On Timer enable bit. void IRCarrierAc64::_cancelOnTimer(void) { _.OnTimerEnable = false; } /// Get the current On Timer time. /// @return The number of minutes it is set for. 0 means it's off. /// @note The A/C protocol only supports one hour increments. uint16_t IRCarrierAc64::getOnTimer(void) const { if (_.OnTimerEnable) return _.OnTimer * 60; else return 0; } /// Set the On Timer time. /// @param[in] nr_of_mins Number of minutes to set the timer to. /// (< 60 is disable). /// @note The A/C protocol only supports one hour increments. void IRCarrierAc64::setOnTimer(const uint16_t nr_of_mins) { uint8_t hours = std::min((uint8_t)(nr_of_mins / 60), kCarrierAc64TimerMax); _.OnTimerEnable = static_cast(hours); // Enable _.OnTimer = std::max(kCarrierAc64TimerMin, hours); // Hours if (hours) { // If enabled, disable the Off Timer & Sleep mode. _cancelOffTimer(); setSleep(false); } } /// Clear the Off Timer enable bit. void IRCarrierAc64::_cancelOffTimer(void) { _.OffTimerEnable = false; } /// Get the current Off Timer time. /// @return The number of minutes it is set for. 0 means it's off. /// @note The A/C protocol only supports one hour increments. uint16_t IRCarrierAc64::getOffTimer(void) const { if (_.OffTimerEnable) return _.OffTimer * 60; else return 0; } /// Set the Off Timer time. /// @param[in] nr_of_mins Number of minutes to set the timer to. /// (< 60 is disable). /// @note The A/C protocol only supports one hour increments. void IRCarrierAc64::setOffTimer(const uint16_t nr_of_mins) { uint8_t hours = std::min((uint8_t)(nr_of_mins / 60), kCarrierAc64TimerMax); // The time can be changed in sleep mode, but doesn't set the flag. _.OffTimerEnable = (hours && !_.Sleep); _.OffTimer = std::max(kCarrierAc64TimerMin, hours); // Hours if (hours) { // If enabled, disable the On Timer & Sleep mode. _cancelOnTimer(); setSleep(false); } } /// Convert the internal state into a human readable string. /// @return The current internal state expressed as a human readable String. String IRCarrierAc64::toString(void) const { String result = ""; result.reserve(120); // Reserve some heap for the string to reduce fragging. result += addBoolToString(_.Power, kPowerStr, false); result += addModeToString(_.Mode, 0xFF, kCarrierAc64Cool, kCarrierAc64Heat, 0xFF, kCarrierAc64Fan); result += addTempToString(getTemp()); result += addFanToString(_.Fan, kCarrierAc64FanHigh, kCarrierAc64FanLow, kCarrierAc64FanAuto, kCarrierAc64FanAuto, kCarrierAc64FanMedium); result += addBoolToString(_.SwingV, kSwingVStr); result += addBoolToString(_.Sleep, kSleepStr); result += addLabeledString(getOnTimer() ? minsToString(getOnTimer()) : kOffStr, kOnTimerStr); result += addLabeledString(getOffTimer() ? minsToString(getOffTimer()) : kOffStr, kOffTimerStr); return result; } /// Convert the A/C state to it's common stdAc::state_t equivalent. /// @return A stdAc::state_t state. stdAc::state_t IRCarrierAc64::toCommon(void) const { stdAc::state_t result; result.protocol = decode_type_t::CARRIER_AC64; result.model = -1; // No models used. result.power = _.Power; result.mode = toCommonMode(_.Mode); result.celsius = true; result.degrees = getTemp(); result.fanspeed = toCommonFanSpeed(_.Fan); result.swingv = _.SwingV ? stdAc::swingv_t::kAuto : stdAc::swingv_t::kOff; result.sleep = _.Sleep ? 0 : -1; // Not supported. result.swingh = stdAc::swingh_t::kOff; result.turbo = false; result.quiet = false; result.clean = false; result.filter = false; result.beep = false; result.econo = false; result.light = false; result.clock = -1; return result; }