Tasmota/lib/lib_basic/NeoPixelBus-2.6.1.4/src/internal/NeoAvrMethod.h
Jason2866 0e0275cf43
Patch 2 (#173)
* ili9341 update

* update ili9341

* Update support_tasmota.ino

* fix scripter bug

* Deep+

* Update ILI9341_2.cpp

Fix invert display

* Update xdsp_04_ili9341.ino

Fix display modes

* fix ili9341 m5stack

* Refactor DHT negative temps

* Standardize on unconnected pin being -1

* Back to chain+

* Strict

* strict

* Update platformio_tasmota32.ini

* Fix renderer

* Change NeoPixelBus library from v2.6.0 to v2.6.1.4

* display batch

* Update xdrv_13_display.ino

* ldf strict

Co-authored-by: gemu2015 <gmutz2010@googlemail.com>
Co-authored-by: Theo Arends <11044339+arendst@users.noreply.github.com>
2021-02-14 16:04:03 +01:00

225 lines
7.0 KiB
C++

/*-------------------------------------------------------------------------
NeoPixel library helper functions for Atmel AVR.
Written by Michael C. Miller.
Some work taken from the Adafruit NeoPixel library.
I invest time and resources providing this open source code,
please support me by dontating (see https://github.com/Makuna/NeoPixelBus)
-------------------------------------------------------------------------
This file is part of the Makuna/NeoPixelBus library.
NeoPixelBus is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
NeoPixelBus is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with NeoPixel. If not, see
<http://www.gnu.org/licenses/>.
-------------------------------------------------------------------------*/
#pragma once
#if defined(ARDUINO_ARCH_AVR) || defined(ARDUINO_ARCH_MEGAAVR)
extern "C"
{
void send_data_8mhz_800_PortD(uint8_t* data, size_t sizeData, uint8_t pinMask);
void send_data_8mhz_800_PortB(uint8_t* data, size_t sizeData, uint8_t pinMask);
void send_data_8mhz_400(uint8_t* data, size_t sizeData, volatile uint8_t* port, uint8_t pinMask);
void send_data_12mhz_800_PortD(uint8_t* data, size_t sizeData, uint8_t pinMask);
void send_data_12mhz_800_PortB(uint8_t* data, size_t sizeData, uint8_t pinMask);
void send_data_12mhz_400(uint8_t* data, size_t sizeData, volatile uint8_t* port, uint8_t pinMask);
void send_data_16mhz_800(uint8_t* data, size_t sizeData, volatile uint8_t* port, uint8_t pinMask);
void send_data_16mhz_400(uint8_t* data, size_t sizeData, volatile uint8_t* port, uint8_t pinMask);
}
class NeoAvrSpeed800KbpsBase
{
public:
static void send_data(uint8_t* data, size_t sizeData, volatile uint8_t* port, uint8_t pinMask)
{
#if (F_CPU >= 7400000UL) && (F_CPU <= 9500000UL) // 8Mhz CPU
#ifdef PORTD // PORTD isn't present on ATtiny85, etc.
if (port == &PORTD)
send_data_8mhz_800_PortD(data, sizeData, pinMask);
else if (port == &PORTB)
#endif // PORTD
send_data_8mhz_800_PortB(data, sizeData, pinMask);
#elif (F_CPU >= 11100000UL) && (F_CPU <= 14300000UL) // 12Mhz CPU
#ifdef PORTD // PORTD
if (port == &PORTD)
send_data_12mhz_800_PortD(data, sizeData, pinMask);
else if (port == &PORTB)
#endif // PORTD
send_data_12mhz_800_PortB(data, sizeData, pinMask);
#elif (F_CPU >= 15400000UL) && (F_CPU <= 19000000L) // 16Mhz CPU
send_data_16mhz_800(data, sizeData, port, pinMask);
#else
#error "CPU SPEED NOT SUPPORTED"
#endif
}
};
class NeoAvrSpeedWs2812x : public NeoAvrSpeed800KbpsBase
{
public:
static const uint32_t ResetTimeUs = 300;
};
class NeoAvrSpeedSk6812 : public NeoAvrSpeed800KbpsBase
{
public:
static const uint32_t ResetTimeUs = 80;
};
class NeoAvrSpeedTm1814 : public NeoAvrSpeed800KbpsBase
{
public:
static const uint32_t ResetTimeUs = 200;
};
class NeoAvrSpeed800Kbps: public NeoAvrSpeed800KbpsBase
{
public:
static const uint32_t ResetTimeUs = 50;
};
class NeoAvrSpeed400Kbps
{
public:
static void send_data(uint8_t* data, size_t sizeData, volatile uint8_t* port, uint8_t pinMask)
{
#if (F_CPU >= 7400000UL) && (F_CPU <= 9500000UL) // 8Mhz CPU
send_data_8mhz_400(data, sizeData, port, pinMask);
#elif (F_CPU >= 11100000UL) && (F_CPU <= 14300000UL) // 12Mhz CPU
send_data_12mhz_400(data, sizeData, port, pinMask);
#elif (F_CPU >= 15400000UL) && (F_CPU <= 19000000L) // 16Mhz CPU
send_data_16mhz_400(data, sizeData, port, pinMask);
#else
#error "CPU SPEED NOT SUPPORTED"
#endif
}
static const uint32_t ResetTimeUs = 50;
};
template<typename T_SPEED> class NeoAvrMethodBase
{
public:
NeoAvrMethodBase(uint8_t pin, uint16_t pixelCount, size_t elementSize, size_t settingsSize) :
_sizeData(pixelCount * elementSize + settingsSize),
_pin(pin),
_port(NULL),
_pinMask(0)
{
pinMode(pin, OUTPUT);
_data = static_cast<uint8_t*>(malloc(_sizeData));
// data cleared later in Begin()
_port = portOutputRegister(digitalPinToPort(pin));
_pinMask = digitalPinToBitMask(pin);
}
~NeoAvrMethodBase()
{
pinMode(_pin, INPUT);
free(_data);
}
bool IsReadyToUpdate() const
{
uint32_t delta = micros() - _endTime;
return (delta >= T_SPEED::ResetTimeUs);
}
void Initialize()
{
digitalWrite(_pin, LOW);
_endTime = micros();
}
void Update(bool)
{
// Data latch = 50+ microsecond pause in the output stream. Rather than
// put a delay at the end of the function, the ending time is noted and
// the function will simply hold off (if needed) on issuing the
// subsequent round of data until the latch time has elapsed. This
// allows the mainline code to start generating the next frame of data
// rather than stalling for the latch.
while (!IsReadyToUpdate())
{
#if !defined(ARDUINO_TEEONARDU_LEO) && !defined(ARDUINO_TEEONARDU_FLORA)
yield(); // allows for system yield if needed
#endif
}
noInterrupts(); // Need 100% focus on instruction timing
T_SPEED::send_data(_data, _sizeData, _port, _pinMask);
interrupts();
// save EOD time for latch on next call
_endTime = micros();
}
uint8_t* getData() const
{
return _data;
};
size_t getDataSize() const
{
return _sizeData;
};
private:
const size_t _sizeData; // size of _data below
const uint8_t _pin; // output pin number
uint32_t _endTime; // Latch timing reference
uint8_t* _data; // Holds data stream which include LED color values and other settings as needed
volatile uint8_t* _port; // Output PORT register
uint8_t _pinMask; // Output PORT bitmask
};
typedef NeoAvrMethodBase<NeoAvrSpeedWs2812x> NeoAvrWs2812xMethod;
typedef NeoAvrMethodBase<NeoAvrSpeedSk6812> NeoAvrSk6812Method;
typedef NeoAvrMethodBase<NeoAvrSpeedTm1814> NeoAvrTm1814InvertedMethod;
typedef NeoAvrMethodBase<NeoAvrSpeed800Kbps> NeoAvr800KbpsMethod;
typedef NeoAvrMethodBase<NeoAvrSpeed400Kbps> NeoAvr400KbpsMethod;
// AVR doesn't have alternatives yet, so there is just the default
typedef NeoAvrWs2812xMethod NeoWs2813Method;
typedef NeoAvrWs2812xMethod NeoWs2812xMethod;
typedef NeoAvr800KbpsMethod NeoWs2812Method;
typedef NeoAvrWs2812xMethod NeoWs2811Method;
typedef NeoAvrSk6812Method NeoSk6812Method;
typedef NeoAvrSk6812Method NeoLc8812Method;
typedef NeoAvr400KbpsMethod NeoApa106Method;
typedef NeoAvrWs2812xMethod Neo800KbpsMethod;
typedef NeoAvr400KbpsMethod Neo400KbpsMethod;
typedef NeoAvrTm1814InvertedMethod NeoTm1814InvertedMethod;
#endif