Tasmota/lib/IRremoteESP8266-2.5.2.03/src/IRsend.h
Theo Arends 0924dfcfb7 Update IRRemoteESP8266 library
Update IRRemoteESP8266 library from 2.2.1 to 2.5.2
2018-11-20 15:53:56 +01:00

334 lines
13 KiB
C++

// Copyright 2009 Ken Shirriff
// Copyright 2015 Mark Szabo
// Copyright 2017 David Conran
#ifndef IRSEND_H_
#define IRSEND_H_
#define __STDC_LIMIT_MACROS
#include <stdint.h>
#include "IRremoteESP8266.h"
// Originally from https://github.com/shirriff/Arduino-IRremote/
// Updated by markszabo (https://github.com/markszabo/IRremoteESP8266) for
// sending IR code on ESP8266
#if TEST || UNIT_TEST
#define VIRTUAL virtual
#else
#define VIRTUAL
#endif
// Constants
// Offset (in microseconds) to use in Period time calculations to account for
// code excution time in producing the software PWM signal.
// Value was calculated on Wemos D1 mini using v2.4.1 with v2.4.0 ESP core
const int8_t kPeriodOffset = -5;
const uint8_t kDutyDefault = 50; // Percentage
const uint8_t kDutyMax = 100; // Percentage
// delayMicroseconds() is only accurate to 16383us.
// Ref: https://www.arduino.cc/en/Reference/delayMicroseconds
const uint16_t kMaxAccurateUsecDelay = 16383;
// Classes
class IRsend {
public:
explicit IRsend(uint16_t IRsendPin, bool inverted = false,
bool use_modulation = true);
void begin();
void enableIROut(uint32_t freq, uint8_t duty = kDutyDefault);
VIRTUAL void _delayMicroseconds(uint32_t usec);
VIRTUAL uint16_t mark(uint16_t usec);
VIRTUAL void space(uint32_t usec);
int8_t calibrate(uint16_t hz = 38000U);
void sendRaw(uint16_t buf[], uint16_t len, uint16_t hz);
void sendData(uint16_t onemark, uint32_t onespace, uint16_t zeromark,
uint32_t zerospace, uint64_t data, uint16_t nbits,
bool MSBfirst = true);
void sendGeneric(const uint16_t headermark, const uint32_t headerspace,
const uint16_t onemark, const uint32_t onespace,
const uint16_t zeromark, const uint32_t zerospace,
const uint16_t footermark, const uint32_t gap,
const uint64_t data, const uint16_t nbits,
const uint16_t frequency, const bool MSBfirst,
const uint16_t repeat, const uint8_t dutycycle);
void sendGeneric(const uint16_t headermark, const uint32_t headerspace,
const uint16_t onemark, const uint32_t onespace,
const uint16_t zeromark, const uint32_t zerospace,
const uint16_t footermark, const uint32_t gap,
const uint32_t mesgtime, const uint64_t data,
const uint16_t nbits, const uint16_t frequency,
const bool MSBfirst, const uint16_t repeat,
const uint8_t dutycycle);
void sendGeneric(const uint16_t headermark, const uint32_t headerspace,
const uint16_t onemark, const uint32_t onespace,
const uint16_t zeromark, const uint32_t zerospace,
const uint16_t footermark, const uint32_t gap,
const uint8_t *dataptr, const uint16_t nbytes,
const uint16_t frequency, const bool MSBfirst,
const uint16_t repeat, const uint8_t dutycycle);
void send(uint16_t type, uint64_t data, uint16_t nbits);
#if (SEND_NEC || SEND_SHERWOOD || SEND_AIWA_RC_T501 || SEND_SANYO)
void sendNEC(uint64_t data, uint16_t nbits = kNECBits,
uint16_t repeat = kNoRepeat);
uint32_t encodeNEC(uint16_t address, uint16_t command);
#endif
#if SEND_SONY
// sendSony() should typically be called with repeat=2 as Sony devices
// expect the code to be sent at least 3 times. (code + 2 repeats = 3 codes)
// Legacy use of this procedure was to only send a single code so call it with
// repeat=0 for backward compatibility. As of v2.0 it defaults to sending
// a Sony command that will be accepted be a device.
void sendSony(uint64_t data, uint16_t nbits = kSony20Bits,
uint16_t repeat = kSonyMinRepeat);
uint32_t encodeSony(uint16_t nbits, uint16_t command, uint16_t address,
uint16_t extended = 0);
#endif
#if SEND_SHERWOOD
void sendSherwood(uint64_t data, uint16_t nbits = kSherwoodBits,
uint16_t repeat = kSherwoodMinRepeat);
#endif
#if SEND_SAMSUNG
void sendSAMSUNG(uint64_t data, uint16_t nbits = kSamsungBits,
uint16_t repeat = kNoRepeat);
uint32_t encodeSAMSUNG(uint8_t customer, uint8_t command);
#endif
#if SEND_SAMSUNG_AC
void sendSamsungAC(unsigned char data[],
uint16_t nbytes = kSamsungAcStateLength,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_LG
void sendLG(uint64_t data, uint16_t nbits = kLgBits,
uint16_t repeat = kNoRepeat);
void sendLG2(uint64_t data, uint16_t nbits = kLgBits,
uint16_t repeat = kNoRepeat);
uint32_t encodeLG(uint16_t address, uint16_t command);
#endif
#if (SEND_SHARP || SEND_DENON)
uint32_t encodeSharp(uint16_t address, uint16_t command,
uint16_t expansion = 1, uint16_t check = 0,
bool MSBfirst = false);
void sendSharp(uint16_t address, uint16_t command,
uint16_t nbits = kSharpBits, uint16_t repeat = kNoRepeat);
void sendSharpRaw(uint64_t data, uint16_t nbits = kSharpBits,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_JVC
void sendJVC(uint64_t data, uint16_t nbits = kJvcBits,
uint16_t repeat = kNoRepeat);
uint16_t encodeJVC(uint8_t address, uint8_t command);
#endif
#if SEND_DENON
void sendDenon(uint64_t data, uint16_t nbits = DENON_BITS,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_SANYO
uint64_t encodeSanyoLC7461(uint16_t address, uint8_t command);
void sendSanyoLC7461(uint64_t data, uint16_t nbits = kSanyoLC7461Bits,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_DISH
// sendDISH() should typically be called with repeat=3 as DISH devices
// expect the code to be sent at least 4 times. (code + 3 repeats = 4 codes)
// Legacy use of this procedure was only to send a single code
// so use repeat=0 for backward compatibility.
void sendDISH(uint64_t data, uint16_t nbits = kDishBits,
uint16_t repeat = kDishMinRepeat);
#endif
#if (SEND_PANASONIC || SEND_DENON)
void sendPanasonic64(uint64_t data, uint16_t nbits = kPanasonicBits,
uint16_t repeat = kNoRepeat);
void sendPanasonic(uint16_t address, uint32_t data,
uint16_t nbits = kPanasonicBits,
uint16_t repeat = kNoRepeat);
uint64_t encodePanasonic(uint16_t manufacturer, uint8_t device,
uint8_t subdevice, uint8_t function);
#endif
#if SEND_RC5
void sendRC5(uint64_t data, uint16_t nbits = kRC5XBits,
uint16_t repeat = kNoRepeat);
uint16_t encodeRC5(uint8_t address, uint8_t command,
bool key_released = false);
uint16_t encodeRC5X(uint8_t address, uint8_t command,
bool key_released = false);
uint64_t toggleRC5(uint64_t data);
#endif
#if SEND_RC6
void sendRC6(uint64_t data, uint16_t nbits = kRC6Mode0Bits,
uint16_t repeat = kNoRepeat);
uint64_t encodeRC6(uint32_t address, uint8_t command,
uint16_t mode = kRC6Mode0Bits);
uint64_t toggleRC6(uint64_t data, uint16_t nbits = kRC6Mode0Bits);
#endif
#if SEND_RCMM
void sendRCMM(uint64_t data, uint16_t nbits = kRCMMBits,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_COOLIX
void sendCOOLIX(uint64_t data, uint16_t nbits = kCoolixBits,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_WHYNTER
void sendWhynter(uint64_t data, uint16_t nbits = kWhynterBits,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_MITSUBISHI
void sendMitsubishi(uint64_t data, uint16_t nbits = kMitsubishiBits,
uint16_t repeat = kMitsubishiMinRepeat);
#endif
#if SEND_MITSUBISHI2
void sendMitsubishi2(uint64_t data, uint16_t nbits = kMitsubishiBits,
uint16_t repeat = kMitsubishiMinRepeat);
#endif
#if SEND_MITSUBISHI_AC
void sendMitsubishiAC(unsigned char data[],
uint16_t nbytes = kMitsubishiACStateLength,
uint16_t repeat = kMitsubishiACMinRepeat);
#endif
#if SEND_FUJITSU_AC
void sendFujitsuAC(unsigned char data[], uint16_t nbytes,
uint16_t repeat = kFujitsuAcMinRepeat);
#endif
#if SEND_GLOBALCACHE
void sendGC(uint16_t buf[], uint16_t len);
#endif
#if SEND_KELVINATOR
void sendKelvinator(unsigned char data[],
uint16_t nbytes = kKelvinatorStateLength,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_DAIKIN
void sendDaikin(unsigned char data[], uint16_t nbytes = kDaikinStateLength,
uint16_t repeat = kNoRepeat);
void sendDaikinGapHeader();
#endif
#if SEND_AIWA_RC_T501
void sendAiwaRCT501(uint64_t data, uint16_t nbits = kAiwaRcT501Bits,
uint16_t repeat = kAiwaRcT501MinRepeats);
#endif
#if SEND_GREE
void sendGree(uint64_t data, uint16_t nbits = kGreeBits,
uint16_t repeat = kNoRepeat);
void sendGree(uint8_t data[], uint16_t nbytes = kGreeStateLength,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_PRONTO
void sendPronto(uint16_t data[], uint16_t len, uint16_t repeat = kNoRepeat);
#endif
#if SEND_ARGO
void sendArgo(unsigned char data[], uint16_t nbytes = kArgoStateLength,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_TROTEC
void sendTrotec(unsigned char data[], uint16_t nbytes = kTrotecStateLength,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_NIKAI
void sendNikai(uint64_t data, uint16_t nbits = kNikaiBits,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_TOSHIBA_AC
void sendToshibaAC(unsigned char data[],
uint16_t nbytes = kToshibaACStateLength,
uint16_t repeat = kToshibaACMinRepeat);
#endif
#if SEND_MIDEA
void sendMidea(uint64_t data, uint16_t nbits = kMideaBits,
uint16_t repeat = kMideaMinRepeat);
#endif
#if SEND_MAGIQUEST
void sendMagiQuest(uint64_t data, uint16_t nbits = kMagiquestBits,
uint16_t repeat = kNoRepeat);
uint64_t encodeMagiQuest(uint32_t wand_id, uint16_t magnitude);
#endif
#if SEND_LASERTAG
void sendLasertag(uint64_t data, uint16_t nbits = kLasertagBits,
uint16_t repeat = kLasertagMinRepeat);
#endif
#if SEND_CARRIER_AC
void sendCarrierAC(uint64_t data, uint16_t nbits = kCarrierAcBits,
uint16_t repeat = kCarrierAcMinRepeat);
#endif
#if (SEND_HAIER_AC || SEND_HAIER_AC_YRW02)
void sendHaierAC(unsigned char data[], uint16_t nbytes = kHaierACStateLength,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_HAIER_AC_YRW02
void sendHaierACYRW02(unsigned char data[],
uint16_t nbytes = kHaierACYRW02StateLength,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_HITACHI_AC
void sendHitachiAC(unsigned char data[],
uint16_t nbytes = kHitachiAcStateLength,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_HITACHI_AC1
void sendHitachiAC1(unsigned char data[],
uint16_t nbytes = kHitachiAc1StateLength,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_HITACHI_AC2
void sendHitachiAC2(unsigned char data[],
uint16_t nbytes = kHitachiAc2StateLength,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_GICABLE
void sendGICable(uint64_t data, uint16_t nbits = kGicableBits,
uint16_t repeat = kGicableMinRepeat);
#endif
#if SEND_WHIRLPOOL_AC
void sendWhirlpoolAC(unsigned char data[],
uint16_t nbytes = kWhirlpoolAcStateLength,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_LUTRON
void sendLutron(uint64_t data, uint16_t nbits = kLutronBits,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_ELECTRA_AC
void sendElectraAC(unsigned char data[],
uint16_t nbytes = kElectraAcStateLength,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_PANASONIC_AC
void sendPanasonicAC(unsigned char data[],
uint16_t nbytes = kPanasonicAcStateLength,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_PIONEER
void sendPioneer(const uint64_t data, const uint16_t nbits = kPioneerBits,
const uint16_t repeat = kNoRepeat);
uint64_t encodePioneer(uint16_t address, uint16_t command);
#endif
#if SEND_MWM
void sendMWM(unsigned char data[], uint16_t nbytes,
uint16_t repeat = kNoRepeat);
#endif
protected:
#ifdef UNIT_TEST
#ifndef HIGH
#define HIGH 0x1
#endif
#ifndef LOW
#define LOW 0x0
#endif
#endif // UNIT_TEST
uint8_t outputOn;
uint8_t outputOff;
VIRTUAL void ledOff();
VIRTUAL void ledOn();
private:
uint16_t onTimePeriod;
uint16_t offTimePeriod;
uint16_t IRpin;
int8_t periodOffset;
uint8_t _dutycycle;
bool modulation;
uint32_t calcUSecPeriod(uint32_t hz, bool use_offset = true);
};
#endif // IRSEND_H_