Tasmota/lib/IRremoteESP8266-2.7.6/src/ir_Amcor.cpp
2020-04-26 09:59:49 +02:00

324 lines
9.9 KiB
C++

// Copyright 2019 David Conran
// Supports:
// Brand: Amcor, Model: ADR-853H A/C
// Brand: Amcor, Model: TAC-495 remote
// Brand: Amcor, Model: TAC-444 remote
#include "ir_Amcor.h"
#include <algorithm>
#include <cstring>
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
// Constants
// Ref:
// https://github.com/crankyoldgit/IRremoteESP8266/issues/385
const uint16_t kAmcorHdrMark = 8200;
const uint16_t kAmcorHdrSpace = 4200;
const uint16_t kAmcorOneMark = 1500;
const uint16_t kAmcorZeroMark = 600;
const uint16_t kAmcorOneSpace = kAmcorZeroMark;
const uint16_t kAmcorZeroSpace = kAmcorOneMark;
const uint16_t kAmcorFooterMark = 1900;
const uint16_t kAmcorGap = 34300;
const uint8_t kAmcorTolerance = 40;
using irutils::addBoolToString;
using irutils::addModeToString;
using irutils::addFanToString;
using irutils::addTempToString;
using irutils::setBits;
#if SEND_AMCOR
// Send a Amcor HVAC formatted message.
//
// Args:
// data: The message to be sent.
// nbytes: The byte size of the array being sent. typically kAmcorStateLength.
// repeat: The number of times the message is to be repeated.
//
// Status: STABLE / Reported as working.
//
void IRsend::sendAmcor(const unsigned char data[], const uint16_t nbytes,
const uint16_t repeat) {
// Check if we have enough bytes to send a proper message.
if (nbytes < kAmcorStateLength) return;
sendGeneric(kAmcorHdrMark, kAmcorHdrSpace, kAmcorOneMark, kAmcorOneSpace,
kAmcorZeroMark, kAmcorZeroSpace, kAmcorFooterMark, kAmcorGap,
data, nbytes, 38, false, repeat, kDutyDefault);
}
#endif
#if DECODE_AMCOR
// Decode the supplied Amcor HVAC message.
// Args:
// results: Ptr to the data to decode and where to store the decode result.
// offset: The starting index to use when attempting to decode the raw data.
// Typically/Defaults to kStartOffset.
// nbits: Nr. of bits to expect in the data portion.
// Typically kAmcorBits.
// strict: Flag to indicate if we strictly adhere to the specification.
// Returns:
// boolean: True if it can decode it, false if it can't.
//
// Status: STABLE / Reported as working.
//
bool IRrecv::decodeAmcor(decode_results *results, uint16_t offset,
const uint16_t nbits, const bool strict) {
if (results->rawlen <= 2 * nbits + kHeader - 1 + offset)
return false; // Can't possibly be a valid Amcor message.
if (strict && nbits != kAmcorBits)
return false; // We expect Amcor to be 64 bits of message.
uint16_t used;
// Header + Data Block (64 bits) + Footer
used = matchGeneric(results->rawbuf + offset, results->state,
results->rawlen - offset, 64,
kAmcorHdrMark, kAmcorHdrSpace,
kAmcorOneMark, kAmcorOneSpace,
kAmcorZeroMark, kAmcorZeroSpace,
kAmcorFooterMark, kAmcorGap, true,
kAmcorTolerance, 0, false);
if (!used) return false;
offset += used;
if (strict) {
if (!IRAmcorAc::validChecksum(results->state)) return false;
}
// Success
results->bits = nbits;
results->decode_type = AMCOR;
// No need to record the state as we stored it as we decoded it.
// As we use result->state, we don't record value, address, or command as it
// is a union data type.
return true;
}
#endif
IRAmcorAc::IRAmcorAc(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { this->stateReset(); }
void IRAmcorAc::begin(void) { _irsend.begin(); }
#if SEND_AMCOR
void IRAmcorAc::send(const uint16_t repeat) {
_irsend.sendAmcor(getRaw(), kAmcorStateLength, repeat);
}
#endif // SEND_AMCOR
uint8_t IRAmcorAc::calcChecksum(const uint8_t state[], const uint16_t length) {
return irutils::sumNibbles(state, length - 1);
}
bool IRAmcorAc::validChecksum(const uint8_t state[], const uint16_t length) {
return (state[length - 1] == IRAmcorAc::calcChecksum(state, length));
}
void IRAmcorAc::checksum(void) {
remote_state[kAmcorChecksumByte] = IRAmcorAc::calcChecksum(remote_state,
kAmcorStateLength);
}
void IRAmcorAc::stateReset(void) {
for (uint8_t i = 1; i < kAmcorStateLength; i++) remote_state[i] = 0x0;
remote_state[0] = 0x01;
setFan(kAmcorFanAuto);
setMode(kAmcorAuto);
setTemp(25); // 25C
}
uint8_t* IRAmcorAc::getRaw(void) {
this->checksum(); // Ensure correct bit array before returning
return remote_state;
}
void IRAmcorAc::setRaw(const uint8_t state[]) {
memcpy(remote_state, state, kAmcorStateLength);
}
void IRAmcorAc::on(void) { setPower(true); }
void IRAmcorAc::off(void) { setPower(false); }
void IRAmcorAc::setPower(const bool on) {
setBits(&remote_state[kAmcorPowerByte], kAmcorPowerOffset, kAmcorPowerSize,
on ? kAmcorPowerOn : kAmcorPowerOff);
}
bool IRAmcorAc::getPower(void) {
return GETBITS8(remote_state[kAmcorPowerByte], kAmcorPowerOffset,
kAmcorPowerSize) == kAmcorPowerOn;
}
// Set the temp in deg C
void IRAmcorAc::setTemp(const uint8_t degrees) {
uint8_t temp = std::max(kAmcorMinTemp, degrees);
temp = std::min(kAmcorMaxTemp, temp);
setBits(&remote_state[kAmcorTempByte], kAmcorTempOffset, kAmcorTempSize,
temp);
}
uint8_t IRAmcorAc::getTemp(void) {
return GETBITS8(remote_state[kAmcorTempByte], kAmcorTempOffset,
kAmcorTempSize);
}
// Maximum Cooling or Hearing
void IRAmcorAc::setMax(const bool on) {
if (on) {
switch (getMode()) {
case kAmcorCool: setTemp(kAmcorMinTemp); break;
case kAmcorHeat: setTemp(kAmcorMaxTemp); break;
// Not allowed in all other operating modes.
default: return;
}
}
setBits(&remote_state[kAmcorSpecialByte], kAmcorMaxOffset, kAmcorMaxSize,
on ? kAmcorMax : 0);
}
bool IRAmcorAc::getMax(void) {
return GETBITS8(remote_state[kAmcorSpecialByte], kAmcorMaxOffset,
kAmcorMaxSize) == kAmcorMax;
}
// Set the speed of the fan
void IRAmcorAc::setFan(const uint8_t speed) {
switch (speed) {
case kAmcorFanAuto:
case kAmcorFanMin:
case kAmcorFanMed:
case kAmcorFanMax:
setBits(&remote_state[kAmcorModeFanByte], kAmcorFanOffset, kAmcorFanSize,
speed);
break;
default:
setFan(kAmcorFanAuto);
}
}
uint8_t IRAmcorAc::getFan(void) {
return GETBITS8(remote_state[kAmcorModeFanByte], kAmcorFanOffset,
kAmcorFanSize);
}
uint8_t IRAmcorAc::getMode(void) {
return GETBITS8(remote_state[kAmcorModeFanByte], kAmcorModeOffset,
kAmcorModeSize);
}
void IRAmcorAc::setMode(const uint8_t mode) {
switch (mode) {
case kAmcorFan:
case kAmcorCool:
case kAmcorHeat:
case kAmcorDry:
case kAmcorAuto:
setBits(&remote_state[kAmcorSpecialByte], kAmcorVentOffset,
kAmcorVentSize, (mode == kAmcorFan) ? kAmcorVentOn : 0);
setBits(&remote_state[kAmcorModeFanByte], kAmcorModeOffset,
kAmcorModeSize, mode);
return;
default:
this->setMode(kAmcorAuto);
}
}
// Convert a standard A/C mode into its native mode.
uint8_t IRAmcorAc::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool:
return kAmcorCool;
case stdAc::opmode_t::kHeat:
return kAmcorHeat;
case stdAc::opmode_t::kDry:
return kAmcorDry;
case stdAc::opmode_t::kFan:
return kAmcorFan;
default:
return kAmcorAuto;
}
}
// Convert a standard A/C Fan speed into its native fan speed.
uint8_t IRAmcorAc::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin:
case stdAc::fanspeed_t::kLow:
return kAmcorFanMin;
case stdAc::fanspeed_t::kMedium:
return kAmcorFanMed;
case stdAc::fanspeed_t::kHigh:
case stdAc::fanspeed_t::kMax:
return kAmcorFanMax;
default:
return kAmcorFanAuto;
}
}
// Convert a native mode to it's common equivalent.
stdAc::opmode_t IRAmcorAc::toCommonMode(const uint8_t mode) {
switch (mode) {
case kAmcorCool: return stdAc::opmode_t::kCool;
case kAmcorHeat: return stdAc::opmode_t::kHeat;
case kAmcorDry: return stdAc::opmode_t::kDry;
case kAmcorFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
// Convert a native fan speed to it's common equivalent.
stdAc::fanspeed_t IRAmcorAc::toCommonFanSpeed(const uint8_t speed) {
switch (speed) {
case kAmcorFanMax: return stdAc::fanspeed_t::kMax;
case kAmcorFanMed: return stdAc::fanspeed_t::kMedium;
case kAmcorFanMin: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
// Convert the A/C state to it's common equivalent.
stdAc::state_t IRAmcorAc::toCommon(void) {
stdAc::state_t result;
result.protocol = decode_type_t::AMCOR;
result.power = this->getPower();
result.mode = this->toCommonMode(this->getMode());
result.celsius = true;
result.degrees = this->getTemp();
result.fanspeed = this->toCommonFanSpeed(this->getFan());
// Not supported.
result.model = -1;
result.turbo = false;
result.swingv = stdAc::swingv_t::kOff;
result.swingh = stdAc::swingh_t::kOff;
result.light = false;
result.filter = false;
result.econo = false;
result.quiet = false;
result.clean = false;
result.beep = false;
result.sleep = -1;
result.clock = -1;
return result;
}
// Convert the internal state into a human readable string.
String IRAmcorAc::toString(void) {
String result = "";
result.reserve(70); // Reserve some heap for the string to reduce fragging.
result += addBoolToString(getPower(), kPowerStr, false);
result += addModeToString(getMode(), kAmcorAuto, kAmcorCool,
kAmcorHeat, kAmcorDry, kAmcorFan);
result += addFanToString(getFan(), kAmcorFanMax, kAmcorFanMin,
kAmcorFanAuto, kAmcorFanAuto,
kAmcorFanMed);
result += addTempToString(getTemp());
result += addBoolToString(getMax(), kMaxStr);
return result;
}