715 lines
24 KiB
C++
715 lines
24 KiB
C++
// Copyright 2017 Ville Skyttä (scop)
|
|
// Copyright 2017, 2018 David Conran
|
|
|
|
/// @file
|
|
/// @brief Support for Gree A/C protocols.
|
|
/// @see https://github.com/ToniA/arduino-heatpumpir/blob/master/GreeHeatpumpIR.h
|
|
|
|
#include "ir_Gree.h"
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#ifndef ARDUINO
|
|
#include <string>
|
|
#endif
|
|
#include "IRrecv.h"
|
|
#include "IRremoteESP8266.h"
|
|
#include "IRsend.h"
|
|
#include "IRtext.h"
|
|
#include "IRutils.h"
|
|
#include "ir_Kelvinator.h"
|
|
|
|
// Constants
|
|
const uint16_t kGreeHdrMark = 9000;
|
|
const uint16_t kGreeHdrSpace = 4500; ///< See #684 & real example in unit tests
|
|
const uint16_t kGreeBitMark = 620;
|
|
const uint16_t kGreeOneSpace = 1600;
|
|
const uint16_t kGreeZeroSpace = 540;
|
|
const uint16_t kGreeMsgSpace = 19000;
|
|
const uint8_t kGreeBlockFooter = 0b010;
|
|
const uint8_t kGreeBlockFooterBits = 3;
|
|
|
|
using irutils::addBoolToString;
|
|
using irutils::addIntToString;
|
|
using irutils::addLabeledString;
|
|
using irutils::addModeToString;
|
|
using irutils::addModelToString;
|
|
using irutils::addFanToString;
|
|
using irutils::addTempToString;
|
|
using irutils::minsToString;
|
|
|
|
#if SEND_GREE
|
|
/// Send a Gree Heat Pump formatted message.
|
|
/// Status: STABLE / Working.
|
|
/// @param[in] data The message to be sent.
|
|
/// @param[in] nbytes The number of bytes of message to be sent.
|
|
/// @param[in] repeat The number of times the command is to be repeated.
|
|
void IRsend::sendGree(const uint8_t data[], const uint16_t nbytes,
|
|
const uint16_t repeat) {
|
|
if (nbytes < kGreeStateLength)
|
|
return; // Not enough bytes to send a proper message.
|
|
|
|
for (uint16_t r = 0; r <= repeat; r++) {
|
|
// Block #1
|
|
sendGeneric(kGreeHdrMark, kGreeHdrSpace, kGreeBitMark, kGreeOneSpace,
|
|
kGreeBitMark, kGreeZeroSpace, 0, 0, // No Footer.
|
|
data, 4, 38, false, 0, 50);
|
|
// Footer #1
|
|
sendGeneric(0, 0, // No Header
|
|
kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace,
|
|
kGreeBitMark, kGreeMsgSpace, 0b010, 3, 38, false, 0, 50);
|
|
|
|
// Block #2
|
|
sendGeneric(0, 0, // No Header for Block #2
|
|
kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace,
|
|
kGreeBitMark, kGreeMsgSpace, data + 4, nbytes - 4, 38, false, 0,
|
|
50);
|
|
}
|
|
}
|
|
|
|
/// Send a Gree Heat Pump formatted message.
|
|
/// Status: STABLE / Working.
|
|
/// @param[in] data The message to be sent.
|
|
/// @param[in] nbits The number of bits of message to be sent.
|
|
/// @param[in] repeat The number of times the command is to be repeated.
|
|
void IRsend::sendGree(const uint64_t data, const uint16_t nbits,
|
|
const uint16_t repeat) {
|
|
if (nbits != kGreeBits)
|
|
return; // Wrong nr. of bits to send a proper message.
|
|
// Set IR carrier frequency
|
|
enableIROut(38);
|
|
|
|
for (uint16_t r = 0; r <= repeat; r++) {
|
|
// Header
|
|
mark(kGreeHdrMark);
|
|
space(kGreeHdrSpace);
|
|
|
|
// Data
|
|
for (int16_t i = 8; i <= nbits; i += 8) {
|
|
sendData(kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace,
|
|
(data >> (nbits - i)) & 0xFF, 8, false);
|
|
if (i == nbits / 2) {
|
|
// Send the mid-message Footer.
|
|
sendData(kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace,
|
|
0b010, 3);
|
|
mark(kGreeBitMark);
|
|
space(kGreeMsgSpace);
|
|
}
|
|
}
|
|
// Footer
|
|
mark(kGreeBitMark);
|
|
space(kGreeMsgSpace);
|
|
}
|
|
}
|
|
#endif // SEND_GREE
|
|
|
|
/// Class constructor
|
|
/// @param[in] pin GPIO to be used when sending.
|
|
/// @param[in] model The enum of the model to be emulated.
|
|
/// @param[in] inverted Is the output signal to be inverted?
|
|
/// @param[in] use_modulation Is frequency modulation to be used?
|
|
IRGreeAC::IRGreeAC(const uint16_t pin, const gree_ac_remote_model_t model,
|
|
const bool inverted, const bool use_modulation)
|
|
: _irsend(pin, inverted, use_modulation) {
|
|
stateReset();
|
|
setModel(model);
|
|
}
|
|
|
|
/// Reset the internal state to a fixed known good state.
|
|
void IRGreeAC::stateReset(void) {
|
|
// This resets to a known-good state to Power Off, Fan Auto, Mode Auto, 25C.
|
|
std::memset(_.remote_state, 0, sizeof _.remote_state);
|
|
_.Temp = 9; // _.remote_state[1] = 0x09;
|
|
_.Light = true; // _.remote_state[2] = 0x20;
|
|
_.unknown1 = 5; // _.remote_state[3] = 0x50;
|
|
_.unknown2 = 4; // _.remote_state[5] = 0x20;
|
|
}
|
|
|
|
/// Fix up the internal state so it is correct.
|
|
/// @note Internal use only.
|
|
void IRGreeAC::fixup(void) {
|
|
setPower(getPower()); // Redo the power bits as they differ between models.
|
|
checksum(); // Calculate the checksums
|
|
}
|
|
|
|
/// Set up hardware to be able to send a message.
|
|
void IRGreeAC::begin(void) { _irsend.begin(); }
|
|
|
|
#if SEND_GREE
|
|
/// Send the current internal state as an IR message.
|
|
/// @param[in] repeat Nr. of times the message will be repeated.
|
|
void IRGreeAC::send(const uint16_t repeat) {
|
|
_irsend.sendGree(getRaw(), kGreeStateLength, repeat);
|
|
}
|
|
#endif // SEND_GREE
|
|
|
|
/// Get a PTR to the internal state/code for this protocol.
|
|
/// @return PTR to a code for this protocol based on the current internal state.
|
|
uint8_t* IRGreeAC::getRaw(void) {
|
|
fixup(); // Ensure correct settings before sending.
|
|
return _.remote_state;
|
|
}
|
|
|
|
/// Set the internal state from a valid code for this protocol.
|
|
/// @param[in] new_code A valid code for this protocol.
|
|
void IRGreeAC::setRaw(const uint8_t new_code[]) {
|
|
std::memcpy(_.remote_state, new_code, kGreeStateLength);
|
|
// We can only detect the difference between models when the power is on.
|
|
if (_.Power) {
|
|
if (_.ModelA)
|
|
_model = gree_ac_remote_model_t::YAW1F;
|
|
else
|
|
_model = gree_ac_remote_model_t::YBOFB;
|
|
}
|
|
}
|
|
|
|
/// Calculate and set the checksum values for the internal state.
|
|
/// @param[in] length The size/length of the state array to fix the checksum of.
|
|
void IRGreeAC::checksum(const uint16_t length) {
|
|
// Gree uses the same checksum alg. as Kelvinator's block checksum.
|
|
_.Sum = IRKelvinatorAC::calcBlockChecksum(_.remote_state, length);
|
|
}
|
|
|
|
/// Verify the checksum is valid for a given state.
|
|
/// @param[in] state The array to verify the checksum of.
|
|
/// @param[in] length The length of the state array.
|
|
/// @return true, if the state has a valid checksum. Otherwise, false.
|
|
bool IRGreeAC::validChecksum(const uint8_t state[], const uint16_t length) {
|
|
// Top 4 bits of the last byte in the state is the state's checksum.
|
|
return GETBITS8(state[length - 1], kHighNibble, kNibbleSize) ==
|
|
IRKelvinatorAC::calcBlockChecksum(state, length);
|
|
}
|
|
|
|
/// Set the model of the A/C to emulate.
|
|
/// @param[in] model The enum of the appropriate model.
|
|
void IRGreeAC::setModel(const gree_ac_remote_model_t model) {
|
|
switch (model) {
|
|
case gree_ac_remote_model_t::YAW1F:
|
|
case gree_ac_remote_model_t::YBOFB: _model = model; break;
|
|
default: _model = gree_ac_remote_model_t::YAW1F;
|
|
}
|
|
}
|
|
|
|
/// Get/Detect the model of the A/C.
|
|
/// @return The enum of the compatible model.
|
|
gree_ac_remote_model_t IRGreeAC::getModel(void) const { return _model; }
|
|
|
|
/// Change the power setting to On.
|
|
void IRGreeAC::on(void) { setPower(true); }
|
|
|
|
/// Change the power setting to Off.
|
|
void IRGreeAC::off(void) { setPower(false); }
|
|
|
|
/// Change the power setting.
|
|
/// @param[in] on true, the setting is on. false, the setting is off.
|
|
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/814
|
|
void IRGreeAC::setPower(const bool on) {
|
|
_.Power = on;
|
|
// May not be needed. See #814
|
|
_.ModelA = (on && _model == gree_ac_remote_model_t::YAW1F);
|
|
}
|
|
|
|
/// Get the value of the current power setting.
|
|
/// @return true, the setting is on. false, the setting is off.
|
|
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/814
|
|
bool IRGreeAC::getPower(void) const {
|
|
// See #814. Not checking/requiring: (_.ModelA)
|
|
return _.Power;
|
|
}
|
|
|
|
/// Set the default temperature units to use.
|
|
/// @param[in] on Use Fahrenheit as the units.
|
|
/// true is Fahrenheit, false is Celsius.
|
|
void IRGreeAC::setUseFahrenheit(const bool on) {
|
|
_.UseFahrenheit = on;
|
|
}
|
|
|
|
/// Get the default temperature units in use.
|
|
/// @return true is Fahrenheit, false is Celsius.
|
|
bool IRGreeAC::getUseFahrenheit(void) const {
|
|
return _.UseFahrenheit;
|
|
}
|
|
|
|
/// Set the temp. in degrees
|
|
/// @param[in] temp Desired temperature in Degrees.
|
|
/// @param[in] fahrenheit Use units of Fahrenheit and set that as units used.
|
|
/// false is Celsius (Default), true is Fahrenheit.
|
|
/// @note The unit actually works in Celsius with a special optional
|
|
/// "extra degree" when sending Fahrenheit.
|
|
void IRGreeAC::setTemp(const uint8_t temp, const bool fahrenheit) {
|
|
float safecelsius = temp;
|
|
if (fahrenheit)
|
|
// Covert to F, and add a fudge factor to round to the expected degree.
|
|
// Why 0.6 you ask?! Because it works. Ya'd thing 0.5 would be good for
|
|
// rounding, but Noooooo!
|
|
safecelsius = fahrenheitToCelsius(temp + 0.6);
|
|
setUseFahrenheit(fahrenheit); // Set the correct Temp units.
|
|
|
|
// Make sure we have desired temp in the correct range.
|
|
safecelsius = std::max(static_cast<float>(kGreeMinTempC), safecelsius);
|
|
safecelsius = std::min(static_cast<float>(kGreeMaxTempC), safecelsius);
|
|
// An operating mode of Auto locks the temp to a specific value. Do so.
|
|
if (_.Mode == kGreeAuto) safecelsius = 25;
|
|
|
|
// Set the "main" Celsius degrees.
|
|
_.Temp = safecelsius - kGreeMinTempC;
|
|
// Deal with the extra degree fahrenheit difference.
|
|
_.TempExtraDegreeF = (static_cast<uint8_t>(safecelsius * 2) & 1);
|
|
}
|
|
|
|
/// Get the set temperature
|
|
/// @return The temperature in degrees in the current units (C/F) set.
|
|
uint8_t IRGreeAC::getTemp(void) const {
|
|
uint8_t deg = kGreeMinTempC + _.Temp;
|
|
if (_.UseFahrenheit) {
|
|
deg = celsiusToFahrenheit(deg);
|
|
// Retrieve the "extra" fahrenheit from elsewhere in the code.
|
|
if (_.TempExtraDegreeF) deg++;
|
|
deg = std::max(deg, kGreeMinTempF); // Cover the fact that 61F is < 16C
|
|
}
|
|
return deg;
|
|
}
|
|
|
|
/// Set the speed of the fan.
|
|
/// @param[in] speed The desired setting. 0 is auto, 1-3 is the speed.
|
|
void IRGreeAC::setFan(const uint8_t speed) {
|
|
uint8_t fan = std::min(kGreeFanMax, speed); // Bounds check
|
|
if (_.Mode == kGreeDry) fan = 1; // DRY mode is always locked to fan 1.
|
|
// Set the basic fan values.
|
|
_.Fan = fan;
|
|
}
|
|
|
|
/// Get the current fan speed setting.
|
|
/// @return The current fan speed.
|
|
uint8_t IRGreeAC::getFan(void) const {
|
|
return _.Fan;
|
|
}
|
|
|
|
/// Set the operating mode of the A/C.
|
|
/// @param[in] new_mode The desired operating mode.
|
|
void IRGreeAC::setMode(const uint8_t new_mode) {
|
|
uint8_t mode = new_mode;
|
|
switch (mode) {
|
|
// AUTO is locked to 25C
|
|
case kGreeAuto: setTemp(25); break;
|
|
// DRY always sets the fan to 1.
|
|
case kGreeDry: setFan(1); break;
|
|
case kGreeCool:
|
|
case kGreeFan:
|
|
case kGreeHeat: break;
|
|
// If we get an unexpected mode, default to AUTO.
|
|
default: mode = kGreeAuto;
|
|
}
|
|
_.Mode = mode;
|
|
}
|
|
|
|
/// Get the operating mode setting of the A/C.
|
|
/// @return The current operating mode setting.
|
|
uint8_t IRGreeAC::getMode(void) const {
|
|
return _.Mode;
|
|
}
|
|
|
|
/// Set the Light (LED) setting of the A/C.
|
|
/// @param[in] on true, the setting is on. false, the setting is off.
|
|
void IRGreeAC::setLight(const bool on) {
|
|
_.Light = on;
|
|
}
|
|
|
|
/// Get the Light (LED) setting of the A/C.
|
|
/// @return true, the setting is on. false, the setting is off.
|
|
bool IRGreeAC::getLight(void) const {
|
|
return _.Light;
|
|
}
|
|
|
|
/// Set the IFeel setting of the A/C.
|
|
/// @param[in] on true, the setting is on. false, the setting is off.
|
|
void IRGreeAC::setIFeel(const bool on) {
|
|
_.IFeel = on;
|
|
}
|
|
|
|
/// Get the IFeel setting of the A/C.
|
|
/// @return true, the setting is on. false, the setting is off.
|
|
bool IRGreeAC::getIFeel(void) const {
|
|
return _.IFeel;
|
|
}
|
|
|
|
/// Set the Wifi (enabled) setting of the A/C.
|
|
/// @param[in] on true, the setting is on. false, the setting is off.
|
|
void IRGreeAC::setWiFi(const bool on) {
|
|
_.WiFi = on;
|
|
}
|
|
|
|
/// Get the Wifi (enabled) setting of the A/C.
|
|
/// @return true, the setting is on. false, the setting is off.
|
|
bool IRGreeAC::getWiFi(void) const {
|
|
return _.WiFi;
|
|
}
|
|
|
|
/// Set the XFan (Mould) setting of the A/C.
|
|
/// @param[in] on true, the setting is on. false, the setting is off.
|
|
void IRGreeAC::setXFan(const bool on) {
|
|
_.Xfan = on;
|
|
}
|
|
|
|
/// Get the XFan (Mould) setting of the A/C.
|
|
/// @return true, the setting is on. false, the setting is off.
|
|
bool IRGreeAC::getXFan(void) const {
|
|
return _.Xfan;
|
|
}
|
|
|
|
/// Set the Sleep setting of the A/C.
|
|
/// @param[in] on true, the setting is on. false, the setting is off.
|
|
void IRGreeAC::setSleep(const bool on) {
|
|
_.Sleep = on;
|
|
}
|
|
|
|
/// Get the Sleep setting of the A/C.
|
|
/// @return true, the setting is on. false, the setting is off.
|
|
bool IRGreeAC::getSleep(void) const {
|
|
return _.Sleep;
|
|
}
|
|
|
|
/// Set the Turbo setting of the A/C.
|
|
/// @param[in] on true, the setting is on. false, the setting is off.
|
|
void IRGreeAC::setTurbo(const bool on) {
|
|
_.Turbo = on;
|
|
}
|
|
|
|
/// Get the Turbo setting of the A/C.
|
|
/// @return true, the setting is on. false, the setting is off.
|
|
bool IRGreeAC::getTurbo(void) const {
|
|
return _.Turbo;
|
|
}
|
|
|
|
/// Set the Vertical Swing mode of the A/C.
|
|
/// @param[in] automatic Do we use the automatic setting?
|
|
/// @param[in] position The position/mode to set the vanes to.
|
|
void IRGreeAC::setSwingVertical(const bool automatic, const uint8_t position) {
|
|
_.SwingAuto = automatic;
|
|
uint8_t new_position = position;
|
|
if (!automatic) {
|
|
switch (position) {
|
|
case kGreeSwingUp:
|
|
case kGreeSwingMiddleUp:
|
|
case kGreeSwingMiddle:
|
|
case kGreeSwingMiddleDown:
|
|
case kGreeSwingDown:
|
|
break;
|
|
default:
|
|
new_position = kGreeSwingLastPos;
|
|
}
|
|
} else {
|
|
switch (position) {
|
|
case kGreeSwingAuto:
|
|
case kGreeSwingDownAuto:
|
|
case kGreeSwingMiddleAuto:
|
|
case kGreeSwingUpAuto:
|
|
break;
|
|
default:
|
|
new_position = kGreeSwingAuto;
|
|
}
|
|
}
|
|
_.Swing = new_position;
|
|
}
|
|
|
|
/// Get the Vertical Swing Automatic mode setting of the A/C.
|
|
/// @return true, the setting is on. false, the setting is off.
|
|
bool IRGreeAC::getSwingVerticalAuto(void) const {
|
|
return _.SwingAuto;
|
|
}
|
|
|
|
/// Get the Vertical Swing position setting of the A/C.
|
|
/// @return The native position/mode.
|
|
uint8_t IRGreeAC::getSwingVerticalPosition(void) const {
|
|
return _.Swing;
|
|
}
|
|
|
|
/// Set the timer enable setting of the A/C.
|
|
/// @param[in] on true, the setting is on. false, the setting is off.
|
|
void IRGreeAC::setTimerEnabled(const bool on) {
|
|
_.TimerEnabled = on;
|
|
}
|
|
|
|
/// Get the timer enabled setting of the A/C.
|
|
/// @return true, the setting is on. false, the setting is off.
|
|
bool IRGreeAC::getTimerEnabled(void) const {
|
|
return _.TimerEnabled;
|
|
}
|
|
|
|
/// Get the timer time value from the A/C.
|
|
/// @return The number of minutes the timer is set for.
|
|
uint16_t IRGreeAC::getTimer(void) const {
|
|
uint16_t hrs = irutils::bcdToUint8((_.TimerTensHr << kNibbleSize) |
|
|
_.TimerHours);
|
|
return hrs * 60 + (_.TimerHalfHr ? 30 : 0);
|
|
}
|
|
|
|
/// Set the A/C's timer to turn off in X many minutes.
|
|
/// @param[in] minutes The number of minutes the timer should be set for.
|
|
/// @note Stores time internally in 30 min units.
|
|
/// e.g. 5 mins means 0 (& Off), 95 mins is 90 mins (& On). Max is 24 hours.
|
|
void IRGreeAC::setTimer(const uint16_t minutes) {
|
|
uint16_t mins = std::min(kGreeTimerMax, minutes); // Bounds check.
|
|
setTimerEnabled(mins >= 30); // Timer is enabled when >= 30 mins.
|
|
uint8_t hours = mins / 60;
|
|
// Set the half hour bit.
|
|
_.TimerHalfHr = (mins % 60) >= 30;
|
|
// Set the "tens" digit of hours.
|
|
_.TimerTensHr = hours / 10;
|
|
// Set the "units" digit of hours.
|
|
_.TimerHours = hours % 10;
|
|
}
|
|
|
|
/// Set temperature display mode.
|
|
/// i.e. Internal, External temperature sensing.
|
|
/// @param[in] mode The desired temp source to display.
|
|
/// @note In order for the A/C unit properly accept these settings. You must
|
|
/// cycle (send) in the following order:
|
|
/// kGreeDisplayTempOff(0) -> kGreeDisplayTempSet(1) ->
|
|
/// kGreeDisplayTempInside(2) ->kGreeDisplayTempOutside(3) ->
|
|
/// kGreeDisplayTempOff(0).
|
|
/// The unit will no behave correctly if the changes of this setting are sent
|
|
/// out of order.
|
|
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1118#issuecomment-628242152
|
|
void IRGreeAC::setDisplayTempSource(const uint8_t mode) {
|
|
_.DisplayTemp = mode;
|
|
}
|
|
|
|
/// Get the temperature display mode.
|
|
/// i.e. Internal, External temperature sensing.
|
|
/// @return The current temp source being displayed.
|
|
uint8_t IRGreeAC::getDisplayTempSource(void) const {
|
|
return _.DisplayTemp;
|
|
}
|
|
|
|
/// Convert a stdAc::opmode_t enum into its native mode.
|
|
/// @param[in] mode The enum to be converted.
|
|
/// @return The native equivalent of the enum.
|
|
uint8_t IRGreeAC::convertMode(const stdAc::opmode_t mode) {
|
|
switch (mode) {
|
|
case stdAc::opmode_t::kCool: return kGreeCool;
|
|
case stdAc::opmode_t::kHeat: return kGreeHeat;
|
|
case stdAc::opmode_t::kDry: return kGreeDry;
|
|
case stdAc::opmode_t::kFan: return kGreeFan;
|
|
default: return kGreeAuto;
|
|
}
|
|
}
|
|
|
|
/// Convert a stdAc::fanspeed_t enum into it's native speed.
|
|
/// @param[in] speed The enum to be converted.
|
|
/// @return The native equivalent of the enum.
|
|
uint8_t IRGreeAC::convertFan(const stdAc::fanspeed_t speed) {
|
|
switch (speed) {
|
|
case stdAc::fanspeed_t::kMin: return kGreeFanMin;
|
|
case stdAc::fanspeed_t::kLow:
|
|
case stdAc::fanspeed_t::kMedium: return kGreeFanMax - 1;
|
|
case stdAc::fanspeed_t::kHigh:
|
|
case stdAc::fanspeed_t::kMax: return kGreeFanMax;
|
|
default: return kGreeFanAuto;
|
|
}
|
|
}
|
|
|
|
/// Convert a stdAc::swingv_t enum into it's native setting.
|
|
/// @param[in] swingv The enum to be converted.
|
|
/// @return The native equivalent of the enum.
|
|
uint8_t IRGreeAC::convertSwingV(const stdAc::swingv_t swingv) {
|
|
switch (swingv) {
|
|
case stdAc::swingv_t::kHighest: return kGreeSwingUp;
|
|
case stdAc::swingv_t::kHigh: return kGreeSwingMiddleUp;
|
|
case stdAc::swingv_t::kMiddle: return kGreeSwingMiddle;
|
|
case stdAc::swingv_t::kLow: return kGreeSwingMiddleDown;
|
|
case stdAc::swingv_t::kLowest: return kGreeSwingDown;
|
|
default: return kGreeSwingAuto;
|
|
}
|
|
}
|
|
|
|
/// Convert a native mode into its stdAc equivalent.
|
|
/// @param[in] mode The native setting to be converted.
|
|
/// @return The stdAc equivalent of the native setting.
|
|
stdAc::opmode_t IRGreeAC::toCommonMode(const uint8_t mode) {
|
|
switch (mode) {
|
|
case kGreeCool: return stdAc::opmode_t::kCool;
|
|
case kGreeHeat: return stdAc::opmode_t::kHeat;
|
|
case kGreeDry: return stdAc::opmode_t::kDry;
|
|
case kGreeFan: return stdAc::opmode_t::kFan;
|
|
default: return stdAc::opmode_t::kAuto;
|
|
}
|
|
}
|
|
|
|
/// Convert a native fan speed into its stdAc equivalent.
|
|
/// @param[in] speed The native setting to be converted.
|
|
/// @return The stdAc equivalent of the native setting.
|
|
stdAc::fanspeed_t IRGreeAC::toCommonFanSpeed(const uint8_t speed) {
|
|
switch (speed) {
|
|
case kGreeFanMax: return stdAc::fanspeed_t::kMax;
|
|
case kGreeFanMax - 1: return stdAc::fanspeed_t::kMedium;
|
|
case kGreeFanMin: return stdAc::fanspeed_t::kMin;
|
|
default: return stdAc::fanspeed_t::kAuto;
|
|
}
|
|
}
|
|
|
|
/// Convert a stdAc::swingv_t enum into it's native setting.
|
|
/// @param[in] pos The enum to be converted.
|
|
/// @return The native equivalent of the enum.
|
|
stdAc::swingv_t IRGreeAC::toCommonSwingV(const uint8_t pos) {
|
|
switch (pos) {
|
|
case kGreeSwingUp: return stdAc::swingv_t::kHighest;
|
|
case kGreeSwingMiddleUp: return stdAc::swingv_t::kHigh;
|
|
case kGreeSwingMiddle: return stdAc::swingv_t::kMiddle;
|
|
case kGreeSwingMiddleDown: return stdAc::swingv_t::kLow;
|
|
case kGreeSwingDown: return stdAc::swingv_t::kLowest;
|
|
default: return stdAc::swingv_t::kAuto;
|
|
}
|
|
}
|
|
|
|
/// Convert the current internal state into its stdAc::state_t equivalent.
|
|
/// @return The stdAc equivalent of the native settings.
|
|
stdAc::state_t IRGreeAC::toCommon(void) {
|
|
stdAc::state_t result;
|
|
result.protocol = decode_type_t::GREE;
|
|
result.model = _model;
|
|
result.power = _.Power;
|
|
result.mode = toCommonMode(_.Mode);
|
|
result.celsius = !_.UseFahrenheit;
|
|
result.degrees = getTemp();
|
|
result.fanspeed = toCommonFanSpeed(_.Fan);
|
|
if (_.SwingAuto)
|
|
result.swingv = stdAc::swingv_t::kAuto;
|
|
else
|
|
result.swingv = toCommonSwingV(_.Swing);
|
|
result.turbo = _.Turbo;
|
|
result.light = _.Light;
|
|
result.clean = _.Xfan;
|
|
result.sleep = _.Sleep ? 0 : -1;
|
|
// Not supported.
|
|
result.swingh = stdAc::swingh_t::kOff;
|
|
result.quiet = false;
|
|
result.econo = false;
|
|
result.filter = false;
|
|
result.beep = false;
|
|
result.clock = -1;
|
|
return result;
|
|
}
|
|
|
|
/// Convert the current internal state into a human readable string.
|
|
/// @return A human readable string.
|
|
String IRGreeAC::toString(void) {
|
|
String result = "";
|
|
result.reserve(220); // Reserve some heap for the string to reduce fragging.
|
|
result += addModelToString(decode_type_t::GREE, _model, false);
|
|
result += addBoolToString(_.Power, kPowerStr);
|
|
result += addModeToString(_.Mode, kGreeAuto, kGreeCool, kGreeHeat,
|
|
kGreeDry, kGreeFan);
|
|
result += addTempToString(getTemp(), !_.UseFahrenheit);
|
|
result += addFanToString(_.Fan, kGreeFanMax, kGreeFanMin, kGreeFanAuto,
|
|
kGreeFanAuto, kGreeFanMed);
|
|
result += addBoolToString(_.Turbo, kTurboStr);
|
|
result += addBoolToString(_.IFeel, kIFeelStr);
|
|
result += addBoolToString(_.WiFi, kWifiStr);
|
|
result += addBoolToString(_.Xfan, kXFanStr);
|
|
result += addBoolToString(_.Light, kLightStr);
|
|
result += addBoolToString(_.Sleep, kSleepStr);
|
|
result += addLabeledString(_.SwingAuto ? kAutoStr : kManualStr,
|
|
kSwingVModeStr);
|
|
result += addIntToString(_.Swing, kSwingVStr);
|
|
result += kSpaceLBraceStr;
|
|
switch (_.Swing) {
|
|
case kGreeSwingLastPos:
|
|
result += kLastStr;
|
|
break;
|
|
case kGreeSwingAuto:
|
|
result += kAutoStr;
|
|
break;
|
|
default: result += kUnknownStr;
|
|
}
|
|
result += ')';
|
|
result += addLabeledString(
|
|
_.TimerEnabled ? minsToString(getTimer()) : kOffStr, kTimerStr);
|
|
uint8_t src = _.DisplayTemp;
|
|
result += addIntToString(src, kDisplayTempStr);
|
|
result += kSpaceLBraceStr;
|
|
switch (src) {
|
|
case kGreeDisplayTempOff:
|
|
result += kOffStr;
|
|
break;
|
|
case kGreeDisplayTempSet:
|
|
result += kSetStr;
|
|
break;
|
|
case kGreeDisplayTempInside:
|
|
result += kInsideStr;
|
|
break;
|
|
case kGreeDisplayTempOutside:
|
|
result += kOutsideStr;
|
|
break;
|
|
default: result += kUnknownStr;
|
|
}
|
|
result += ')';
|
|
return result;
|
|
}
|
|
|
|
#if DECODE_GREE
|
|
/// Decode the supplied Gree HVAC message.
|
|
/// Status: STABLE / Working.
|
|
/// @param[in,out] results Ptr to the data to decode & where to store the decode
|
|
/// result.
|
|
/// @param[in] offset The starting index to use when attempting to decode the
|
|
/// raw data. Typically/Defaults to kStartOffset.
|
|
/// @param[in] nbits The number of data bits to expect.
|
|
/// @param[in] strict Flag indicating if we should perform strict matching.
|
|
/// @return A boolean. True if it can decode it, false if it can't.
|
|
bool IRrecv::decodeGree(decode_results* results, uint16_t offset,
|
|
const uint16_t nbits, bool const strict) {
|
|
if (results->rawlen <=
|
|
2 * (nbits + kGreeBlockFooterBits) + (kHeader + kFooter + 1) - 1 + offset)
|
|
return false; // Can't possibly be a valid Gree message.
|
|
if (strict && nbits != kGreeBits)
|
|
return false; // Not strictly a Gree message.
|
|
|
|
// There are two blocks back-to-back in a full Gree IR message
|
|
// sequence.
|
|
|
|
uint16_t used;
|
|
// Header + Data Block #1 (32 bits)
|
|
used = matchGeneric(results->rawbuf + offset, results->state,
|
|
results->rawlen - offset, nbits / 2,
|
|
kGreeHdrMark, kGreeHdrSpace,
|
|
kGreeBitMark, kGreeOneSpace,
|
|
kGreeBitMark, kGreeZeroSpace,
|
|
0, 0, false,
|
|
_tolerance, kMarkExcess, false);
|
|
if (used == 0) return false;
|
|
offset += used;
|
|
|
|
// Block #1 footer (3 bits, B010)
|
|
match_result_t data_result;
|
|
data_result = matchData(&(results->rawbuf[offset]), kGreeBlockFooterBits,
|
|
kGreeBitMark, kGreeOneSpace, kGreeBitMark,
|
|
kGreeZeroSpace, _tolerance, kMarkExcess, false);
|
|
if (data_result.success == false) return false;
|
|
if (data_result.data != kGreeBlockFooter) return false;
|
|
offset += data_result.used;
|
|
|
|
// Inter-block gap + Data Block #2 (32 bits) + Footer
|
|
if (!matchGeneric(results->rawbuf + offset, results->state + 4,
|
|
results->rawlen - offset, nbits / 2,
|
|
kGreeBitMark, kGreeMsgSpace,
|
|
kGreeBitMark, kGreeOneSpace,
|
|
kGreeBitMark, kGreeZeroSpace,
|
|
kGreeBitMark, kGreeMsgSpace, true,
|
|
_tolerance, kMarkExcess, false)) return false;
|
|
|
|
// Compliance
|
|
if (strict) {
|
|
// Verify the message's checksum is correct.
|
|
if (!IRGreeAC::validChecksum(results->state)) return false;
|
|
}
|
|
|
|
// Success
|
|
results->decode_type = GREE;
|
|
results->bits = nbits;
|
|
// No need to record the state as we stored it as we decoded it.
|
|
// As we use result->state, we don't record value, address, or command as it
|
|
// is a union data type.
|
|
return true;
|
|
}
|
|
#endif // DECODE_GREE
|