Tasmota/lib/IRremoteESP8266-2.6.5/src/ir_Tcl.cpp

412 lines
12 KiB
C++
Executable File

// Copyright 2019 David Conran
#include "ir_Tcl.h"
#include <algorithm>
#ifndef ARDUINO
#include <string>
#endif
#include "IRremoteESP8266.h"
#include "IRutils.h"
// Constants
using irutils::addBoolToString;
using irutils::addFanToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addTempToString;
#if SEND_TCL112AC
void IRsend::sendTcl112Ac(const unsigned char data[], const uint16_t nbytes,
const uint16_t repeat) {
sendGeneric(kTcl112AcHdrMark, kTcl112AcHdrSpace,
kTcl112AcBitMark, kTcl112AcOneSpace,
kTcl112AcBitMark, kTcl112AcZeroSpace,
kTcl112AcBitMark, kTcl112AcGap,
data, nbytes, 38000, false, repeat, 50);
}
#endif // SEND_TCL112AC
IRTcl112Ac::IRTcl112Ac(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { stateReset(); }
void IRTcl112Ac::begin(void) { this->_irsend.begin(); }
#if SEND_TCL112AC
void IRTcl112Ac::send(const uint16_t repeat) {
this->checksum();
this->_irsend.sendTcl112Ac(remote_state, kTcl112AcStateLength, repeat);
}
#endif // SEND_TCL112AC
// Calculate the checksum for a given array.
// Args:
// state: The array to calculate the checksum over.
// length: The size of the array.
// Returns:
// The 8 bit checksum value.
uint8_t IRTcl112Ac::calcChecksum(uint8_t state[],
const uint16_t length) {
if (length)
return sumBytes(state, length - 1);
else
return 0;
}
// Calculate & set the checksum for the current internal state of the remote.
void IRTcl112Ac::checksum(const uint16_t length) {
// Stored the checksum value in the last byte.
if (length > 1)
remote_state[length - 1] = calcChecksum(remote_state, length);
}
// Verify the checksum is valid for a given state.
// Args:
// state: The array to verify the checksum of.
// length: The size of the state.
// Returns:
// A boolean.
bool IRTcl112Ac::validChecksum(uint8_t state[], const uint16_t length) {
return (length > 1 && state[length - 1] == calcChecksum(state, length));
}
void IRTcl112Ac::stateReset(void) {
for (uint8_t i = 0; i < kTcl112AcStateLength; i++)
remote_state[i] = 0x0;
// A known good state. (On, Cool, 24C)
remote_state[0] = 0x23;
remote_state[1] = 0xCB;
remote_state[2] = 0x26;
remote_state[3] = 0x01;
remote_state[5] = 0x24;
remote_state[6] = 0x03;
remote_state[7] = 0x07;
remote_state[8] = 0x40;
remote_state[13] = 0x03;
}
uint8_t* IRTcl112Ac::getRaw(void) {
this->checksum();
return remote_state;
}
void IRTcl112Ac::setRaw(const uint8_t new_code[], const uint16_t length) {
for (uint8_t i = 0; i < length && i < kTcl112AcStateLength; i++) {
remote_state[i] = new_code[i];
}
}
// Set the requested power state of the A/C to on.
void IRTcl112Ac::on(void) { this->setPower(true); }
// Set the requested power state of the A/C to off.
void IRTcl112Ac::off(void) { this->setPower(false); }
// Set the requested power state of the A/C.
void IRTcl112Ac::setPower(const bool on) {
if (on)
remote_state[5] |= kTcl112AcPowerMask;
else
remote_state[5] &= ~kTcl112AcPowerMask;
}
// Return the requested power state of the A/C.
bool IRTcl112Ac::getPower(void) {
return remote_state[5] & kTcl112AcPowerMask;
}
// Get the requested climate operation mode of the a/c unit.
// Returns:
// A uint8_t containing the A/C mode.
uint8_t IRTcl112Ac::getMode(void) {
return remote_state[6] & 0xF;
}
// Set the requested climate operation mode of the a/c unit.
// Note: Fan/Ventilation mode sets the fan speed to high.
// Unknown values default to Auto.
void IRTcl112Ac::setMode(const uint8_t mode) {
// If we get an unexpected mode, default to AUTO.
switch (mode) {
case kTcl112AcFan:
this->setFan(kTcl112AcFanHigh);
// FALLTHRU
case kTcl112AcAuto:
case kTcl112AcCool:
case kTcl112AcHeat:
case kTcl112AcDry:
remote_state[6] &= 0xF0;
remote_state[6] |= mode;
break;
default:
setMode(kTcl112AcAuto);
}
}
void IRTcl112Ac::setTemp(const float celsius) {
// Make sure we have desired temp in the correct range.
float safecelsius = std::max(celsius, kTcl112AcTempMin);
safecelsius = std::min(safecelsius, kTcl112AcTempMax);
// Convert to integer nr. of half degrees.
uint8_t nrHalfDegrees = safecelsius * 2;
if (nrHalfDegrees & 1) // Do we have a half degree celsius?
remote_state[12] |= kTcl112AcHalfDegree; // Add 0.5 degrees
else
remote_state[12] &= ~kTcl112AcHalfDegree; // Clear the half degree.
remote_state[7] &= 0xF0; // Clear temp bits.
remote_state[7] |= ((uint8_t)kTcl112AcTempMax - nrHalfDegrees / 2);
}
float IRTcl112Ac::getTemp(void) {
float result = kTcl112AcTempMax - (remote_state[7] & 0xF);
if (remote_state[12] & kTcl112AcHalfDegree) result += 0.5;
return result;
}
// Set the speed of the fan.
// Unknown speeds will default to Auto.
void IRTcl112Ac::setFan(const uint8_t speed) {
switch (speed) {
case kTcl112AcFanAuto:
case kTcl112AcFanLow:
case kTcl112AcFanMed:
case kTcl112AcFanHigh:
remote_state[8] &= ~kTcl112AcFanMask;
remote_state[8] |= speed;
break;
default:
this->setFan(kTcl112AcFanAuto);
}
}
// Return the currect fan speed.
uint8_t IRTcl112Ac::getFan(void) {
return remote_state[8] & kTcl112AcFanMask;
}
// Control economy mode.
void IRTcl112Ac::setEcono(const bool on) {
if (on)
remote_state[5] |= kTcl112AcBitEcono;
else
remote_state[5] &= ~kTcl112AcBitEcono;
}
// Return the economy state of the A/C.
bool IRTcl112Ac::getEcono(void) {
return remote_state[5] & kTcl112AcBitEcono;
}
// Control Health mode.
void IRTcl112Ac::setHealth(const bool on) {
if (on)
remote_state[6] |= kTcl112AcBitHealth;
else
remote_state[6] &= ~kTcl112AcBitHealth;
}
// Return the Health mode state of the A/C.
bool IRTcl112Ac::getHealth(void) {
return remote_state[6] & kTcl112AcBitHealth;
}
// Control Light/Display mode.
void IRTcl112Ac::setLight(const bool on) {
if (on)
remote_state[5] &= ~kTcl112AcBitLight;
else
remote_state[5] |= kTcl112AcBitLight;
}
// Return the Light/Display mode state of the A/C.
bool IRTcl112Ac::getLight(void) {
return !(remote_state[5] & kTcl112AcBitLight);
}
// Control Horizontal Swing.
void IRTcl112Ac::setSwingHorizontal(const bool on) {
if (on)
remote_state[12] |= kTcl112AcBitSwingH;
else
remote_state[12] &= ~kTcl112AcBitSwingH;
}
// Return the Horizontal Swing state of the A/C.
bool IRTcl112Ac::getSwingHorizontal(void) {
return remote_state[12] & kTcl112AcBitSwingH;
}
// Control Vertical Swing.
void IRTcl112Ac::setSwingVertical(const bool on) {
if (on)
remote_state[8] |= kTcl112AcBitSwingV;
else
remote_state[8] &= ~kTcl112AcBitSwingV;
}
// Return the Vertical Swing state of the A/C.
bool IRTcl112Ac::getSwingVertical(void) {
return remote_state[8] & kTcl112AcBitSwingV;
}
// Control the Turbo setting.
void IRTcl112Ac::setTurbo(const bool on) {
if (on) {
remote_state[6] |= kTcl112AcBitTurbo;
this->setFan(kTcl112AcFanHigh);
this->setSwingVertical(true);
} else {
remote_state[6] &= ~kTcl112AcBitTurbo;
}
}
// Return the Turbo setting state of the A/C.
bool IRTcl112Ac::getTurbo(void) {
return remote_state[6] & kTcl112AcBitTurbo;
}
// Convert a standard A/C mode into its native mode.
uint8_t IRTcl112Ac::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool:
return kTcl112AcCool;
case stdAc::opmode_t::kHeat:
return kTcl112AcHeat;
case stdAc::opmode_t::kDry:
return kTcl112AcDry;
case stdAc::opmode_t::kFan:
return kTcl112AcFan;
default:
return kTcl112AcAuto;
}
}
// Convert a standard A/C Fan speed into its native fan speed.
uint8_t IRTcl112Ac::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin:
case stdAc::fanspeed_t::kLow:
return kTcl112AcFanLow;
case stdAc::fanspeed_t::kMedium:
return kTcl112AcFanMed;
case stdAc::fanspeed_t::kHigh:
case stdAc::fanspeed_t::kMax:
return kTcl112AcFanHigh;
default:
return kTcl112AcFanAuto;
}
}
// Convert a native mode to it's common equivalent.
stdAc::opmode_t IRTcl112Ac::toCommonMode(const uint8_t mode) {
switch (mode) {
case kTcl112AcCool: return stdAc::opmode_t::kCool;
case kTcl112AcHeat: return stdAc::opmode_t::kHeat;
case kTcl112AcDry: return stdAc::opmode_t::kDry;
case kTcl112AcFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
// Convert a native fan speed to it's common equivalent.
stdAc::fanspeed_t IRTcl112Ac::toCommonFanSpeed(const uint8_t spd) {
switch (spd) {
case kTcl112AcFanHigh: return stdAc::fanspeed_t::kMax;
case kTcl112AcFanMed: return stdAc::fanspeed_t::kMedium;
case kTcl112AcFanLow: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
// Convert the A/C state to it's common equivalent.
stdAc::state_t IRTcl112Ac::toCommon(void) {
stdAc::state_t result;
result.protocol = decode_type_t::TCL112AC;
result.model = -1; // Not supported.
result.power = this->getPower();
result.mode = this->toCommonMode(this->getMode());
result.celsius = true;
result.degrees = this->getTemp();
result.fanspeed = this->toCommonFanSpeed(this->getFan());
result.swingv = this->getSwingVertical() ? stdAc::swingv_t::kAuto :
stdAc::swingv_t::kOff;
result.swingh = this->getSwingHorizontal() ? stdAc::swingh_t::kAuto :
stdAc::swingh_t::kOff;
result.turbo = this->getTurbo();
result.light = this->getLight();
result.filter = this->getHealth();
result.econo = this->getEcono();
// Not supported.
result.quiet = false;
result.clean = false;
result.beep = false;
result.sleep = -1;
result.clock = -1;
return result;
}
// Convert the internal state into a human readable string.
String IRTcl112Ac::toString(void) {
String result = "";
result.reserve(140); // Reserve some heap for the string to reduce fragging.
result += addBoolToString(getPower(), F("Power"), false);
result += addModeToString(getMode(), kTcl112AcAuto, kTcl112AcCool,
kTcl112AcHeat, kTcl112AcDry, kTcl112AcFan);
uint16_t nrHalfDegrees = this->getTemp() * 2;
result += F(", Temp: ");
result += uint64ToString(nrHalfDegrees / 2);
if (nrHalfDegrees & 1) result += F(".5");
result += 'C';
result += addFanToString(getFan(), kTcl112AcFanHigh, kTcl112AcFanLow,
kTcl112AcFanAuto, kTcl112AcFanAuto, kTcl112AcFanMed);
result += addBoolToString(getEcono(), F("Econo"));
result += addBoolToString(getHealth(), F("Health"));
result += addBoolToString(getLight(), F("Light"));
result += addBoolToString(getTurbo(), F("Turbo"));
result += addBoolToString(getSwingHorizontal(), F("Swing (H)"));
result += addBoolToString(getSwingVertical(), F("Swing (V)"));
return result;
}
#if DECODE_TCL112AC
// Decode the supplied TCL112AC message.
//
// Args:
// results: Ptr to the data to decode and where to store the decode result.
// nbits: The number of data bits to expect. Typically kTcl112AcBits.
// strict: Flag indicating if we should perform strict matching.
// Returns:
// boolean: True if it can decode it, false if it can't.
//
// Status: BETA / Appears to mostly work.
//
// Ref:
// https://github.com/crankyoldgit/IRremoteESP8266/issues/619
bool IRrecv::decodeTcl112Ac(decode_results *results, const uint16_t nbits,
const bool strict) {
if (strict && nbits != kTcl112AcBits) return false;
uint16_t offset = kStartOffset;
// Match Header + Data + Footer
if (!matchGeneric(results->rawbuf + offset, results->state,
results->rawlen - offset, nbits,
kTcl112AcHdrMark, kTcl112AcHdrSpace,
kTcl112AcBitMark, kTcl112AcOneSpace,
kTcl112AcBitMark, kTcl112AcZeroSpace,
kTcl112AcBitMark, kTcl112AcGap, true,
_tolerance + kTcl112AcTolerance, 0, false)) return false;
// Compliance
// Verify we got a valid checksum.
if (strict && !IRTcl112Ac::validChecksum(results->state)) return false;
// Success
results->decode_type = TCL112AC;
results->bits = nbits;
// No need to record the state as we stored it as we decoded it.
// As we use result->state, we don't record value, address, or command as it
// is a union data type.
return true;
}
#endif // DECODE_TCL112AC