Tasmota/lib/IRremoteESP8266-2.7.4/src/ir_Trotec.cpp

285 lines
9.1 KiB
C++

// Copyright 2017 stufisher
// Copyright 2019 crankyoldgit
#include "ir_Trotec.h"
#include <algorithm>
#include <cstring>
#ifndef UNIT_TEST
#include <Arduino.h>
#endif
#include "IRremoteESP8266.h"
#include "IRtext.h"
#include "IRutils.h"
// Constants
const uint16_t kTrotecHdrMark = 5952;
const uint16_t kTrotecHdrSpace = 7364;
const uint16_t kTrotecBitMark = 592;
const uint16_t kTrotecOneSpace = 1560;
const uint16_t kTrotecZeroSpace = 592;
const uint16_t kTrotecGap = 6184;
const uint16_t kTrotecGapEnd = 1500; // made up value
using irutils::addBoolToString;
using irutils::addFanToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addTempToString;
using irutils::setBit;
using irutils::setBits;
#if SEND_TROTEC
void IRsend::sendTrotec(const unsigned char data[], const uint16_t nbytes,
const uint16_t repeat) {
if (nbytes < kTrotecStateLength) return;
enableIROut(36);
for (uint16_t r = 0; r <= repeat; r++) {
sendGeneric(kTrotecHdrMark, kTrotecHdrSpace, kTrotecBitMark,
kTrotecOneSpace, kTrotecBitMark, kTrotecZeroSpace,
kTrotecBitMark, kTrotecGap, data, nbytes, 36, false,
0, // Repeats handled elsewhere
50);
// More footer
mark(kTrotecBitMark);
space(kTrotecGapEnd);
}
}
#endif // SEND_TROTEC
IRTrotecESP::IRTrotecESP(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { this->stateReset(); }
void IRTrotecESP::begin(void) { _irsend.begin(); }
#if SEND_TROTEC
void IRTrotecESP::send(const uint16_t repeat) {
this->checksum();
_irsend.sendTrotec(remote_state, kTrotecStateLength, repeat);
}
#endif // SEND_TROTEC
uint8_t IRTrotecESP::calcChecksum(const uint8_t state[],
const uint16_t length) {
return sumBytes(state + 2, length - 3);
}
bool IRTrotecESP::validChecksum(const uint8_t state[], const uint16_t length) {
return state[length - 1] == calcChecksum(state, length);
}
void IRTrotecESP::checksum(void) {
remote_state[kTrotecStateLength - 1] = sumBytes(remote_state + 2,
kTrotecStateLength - 3);
}
void IRTrotecESP::stateReset(void) {
for (uint8_t i = 2; i < kTrotecStateLength; i++) remote_state[i] = 0x0;
remote_state[0] = kTrotecIntro1;
remote_state[1] = kTrotecIntro2;
this->setPower(false);
this->setTemp(kTrotecDefTemp);
this->setSpeed(kTrotecFanMed);
this->setMode(kTrotecAuto);
}
uint8_t* IRTrotecESP::getRaw(void) {
this->checksum();
return remote_state;
}
void IRTrotecESP::setRaw(const uint8_t state[]) {
memcpy(remote_state, state, kTrotecStateLength);
}
void IRTrotecESP::setPower(const bool on) {
setBit(&remote_state[2], kTrotecPowerBitOffset, on);
}
bool IRTrotecESP::getPower(void) {
return GETBIT8(remote_state[2], kTrotecPowerBitOffset);
}
void IRTrotecESP::setSpeed(const uint8_t fan) {
uint8_t speed = std::min(fan, kTrotecFanHigh);
setBits(&remote_state[2], kTrotecFanOffset, kTrotecFanSize, speed);
}
uint8_t IRTrotecESP::getSpeed(void) {
return GETBITS8(remote_state[2], kTrotecFanOffset, kTrotecFanSize);
}
void IRTrotecESP::setMode(const uint8_t mode) {
setBits(&remote_state[2], kTrotecModeOffset, kTrotecModeSize,
(mode > kTrotecFan) ? kTrotecAuto : mode);
}
uint8_t IRTrotecESP::getMode(void) {
return GETBITS8(remote_state[2], kTrotecModeOffset, kTrotecModeSize);
}
void IRTrotecESP::setTemp(const uint8_t celsius) {
uint8_t temp = std::max(celsius, kTrotecMinTemp);
temp = std::min(temp, kTrotecMaxTemp);
setBits(&remote_state[3], kTrotecTempOffset, kTrotecTempSize,
temp - kTrotecMinTemp);
}
uint8_t IRTrotecESP::getTemp(void) {
return GETBITS8(remote_state[3], kTrotecTempOffset, kTrotecTempSize) +
kTrotecMinTemp;
}
void IRTrotecESP::setSleep(const bool on) {
setBit(&remote_state[3], kTrotecSleepBitOffset, on);
}
bool IRTrotecESP::getSleep(void) {
return GETBIT8(remote_state[3], kTrotecSleepBitOffset);
}
void IRTrotecESP::setTimer(const uint8_t timer) {
setBit(&remote_state[5], kTrotecTimerBitOffset, timer);
remote_state[6] = (timer > kTrotecMaxTimer) ? kTrotecMaxTimer : timer;
}
uint8_t IRTrotecESP::getTimer(void) { return remote_state[6]; }
// Convert a standard A/C mode into its native mode.
uint8_t IRTrotecESP::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kTrotecCool;
case stdAc::opmode_t::kDry: return kTrotecDry;
case stdAc::opmode_t::kFan: return kTrotecFan;
// Note: No Heat mode.
default: return kTrotecAuto;
}
}
// Convert a standard A/C Fan speed into its native fan speed.
uint8_t IRTrotecESP::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin:
case stdAc::fanspeed_t::kLow: return kTrotecFanLow;
case stdAc::fanspeed_t::kMedium: return kTrotecFanMed;
case stdAc::fanspeed_t::kHigh:
case stdAc::fanspeed_t::kMax: return kTrotecFanHigh;
default: return kTrotecFanMed;
}
}
// Convert a native mode to it's common equivalent.
stdAc::opmode_t IRTrotecESP::toCommonMode(const uint8_t mode) {
switch (mode) {
case kTrotecCool: return stdAc::opmode_t::kCool;
case kTrotecDry: return stdAc::opmode_t::kDry;
case kTrotecFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
// Convert a native fan speed to it's common equivalent.
stdAc::fanspeed_t IRTrotecESP::toCommonFanSpeed(const uint8_t spd) {
switch (spd) {
case kTrotecFanHigh: return stdAc::fanspeed_t::kMax;
case kTrotecFanMed: return stdAc::fanspeed_t::kMedium;
case kTrotecFanLow: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
// Convert the A/C state to it's common equivalent.
stdAc::state_t IRTrotecESP::toCommon(void) {
stdAc::state_t result;
result.protocol = decode_type_t::TROTEC;
result.power = this->getPower();
result.mode = this->toCommonMode(this->getMode());
result.celsius = true;
result.degrees = this->getTemp();
result.fanspeed = this->toCommonFanSpeed(this->getSpeed());
result.sleep = this->getSleep() ? 0 : -1;
// Not supported.
result.model = -1; // Not supported.
result.swingv = stdAc::swingv_t::kOff;
result.swingh = stdAc::swingh_t::kOff;
result.turbo = false;
result.light = false;
result.filter = false;
result.econo = false;
result.quiet = false;
result.clean = false;
result.beep = false;
result.clock = -1;
return result;
}
// Convert the internal state into a human readable string.
String IRTrotecESP::toString(void) {
String result = "";
result.reserve(100); // Reserve some heap for the string to reduce fragging.
result += addBoolToString(getPower(), kPowerStr, false);
result += addModeToString(getMode(), kTrotecAuto, kTrotecCool, kTrotecAuto,
kTrotecDry, kTrotecFan);
result += addTempToString(getTemp());
result += addFanToString(getSpeed(), kTrotecFanHigh, kTrotecFanLow,
kTrotecFanHigh, kTrotecFanHigh, kTrotecFanMed);
result += addBoolToString(getSleep(), kSleepStr);
return result;
}
#if DECODE_TROTEC
// Decode the supplied Trotec message.
//
// Args:
// results: Ptr to the data to decode and where to store the decode result.
// offset: The starting index to use when attempting to decode the raw data.
// Typically/Defaults to kStartOffset.
// nbits: The number of data bits to expect. Typically kTrotecBits.
// strict: Flag indicating if we should perform strict matching.
// Returns:
// boolean: True if it can decode it, false if it can't.
//
// Status: BETA / Probably works. Untested on real devices.
//
// Ref:
bool IRrecv::decodeTrotec(decode_results *results, uint16_t offset,
const uint16_t nbits, const bool strict) {
if (results->rawlen <= 2 * nbits + kHeader + 2 * kFooter - 1 + offset)
return false; // Can't possibly be a valid Samsung A/C message.
if (strict && nbits != kTrotecBits) return false;
uint16_t used;
// Header + Data + Footer #1
used = matchGeneric(results->rawbuf + offset, results->state,
results->rawlen - offset, nbits,
kTrotecHdrMark, kTrotecHdrSpace,
kTrotecBitMark, kTrotecOneSpace,
kTrotecBitMark, kTrotecZeroSpace,
kTrotecBitMark, kTrotecGap, true,
_tolerance, 0, false);
if (used == 0) return false;
offset += used;
// Footer #2
if (!matchMark(results->rawbuf[offset++], kTrotecBitMark)) return false;
if (offset <= results->rawlen &&
!matchAtLeast(results->rawbuf[offset++], kTrotecGapEnd)) return false;
// Compliance
// Verify we got a valid checksum.
if (strict && !IRTrotecESP::validChecksum(results->state)) return false;
// Success
results->decode_type = TROTEC;
results->bits = nbits;
// No need to record the state as we stored it as we decoded it.
// As we use result->state, we don't record value, address, or command as it
// is a union data type.
return true;
}
#endif // DECODE_TROTEC