Tasmota/lib/RF24/examples_linux/interrupts/gettingstarted_call_response_int2.cpp
2020-01-01 19:09:20 +01:00

156 lines
4.4 KiB
C++

/*
TMRh20 2014 - Updated to work with optimized RF24 Arduino library
*/
/**
* Example for efficient call-response using ack-payloads
*
* This example continues to make use of all the normal functionality of the radios including
* the auto-ack and auto-retry features, but allows ack-payloads to be written optionlly as well.
* This allows very fast call-response communication, with the responding radio never having to
* switch out of Primary Receiver mode to send back a payload, but having the option to switch to
* primary transmitter if wanting to initiate communication instead of respond to a commmunication.
*/
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <string>
#include <unistd.h>
#include <RF24/RF24.h>
using namespace std;
//
// Hardware configuration
// Configure the appropriate pins for your connections
/****************** Raspberry Pi ***********************/
RF24 radio(22,0);
/********** User Config *********/
// Assign a unique identifier for this node, 0 or 1. Arduino example uses radioNumber 0 by default.
bool radioNumber = 1;
int interruptPin = 23;
/********************************/
// Radio pipe addresses for the 2 nodes to communicate.
const uint8_t addresses[][6] = {"1Node","2Node"};
bool role_ping_out = 1, role_pong_back = 0, role = 0;
uint8_t counter = 1; // A single byte to keep track of the data being sent back and forth
uint32_t timer = 0;
void intHandler(){
bool tx_ok,tx_fail,rx;
radio.whatHappened(tx_ok,tx_fail,rx);
if(tx_fail){
printf("Sending failed.\n\r");
}
if(role == role_ping_out && tx_ok){
if(!radio.available()){
printf("Got blank response. round-trip delay: %u ms\n\r",millis()-timer);
}
}
if(role == role_ping_out ){
while(radio.available() ){
uint8_t gotByte;
radio.read( &gotByte, 1 );
printf("Got response %d, round-trip delay: %u ms\n\r",gotByte,millis()-timer);
counter++;
}
}
if ( role == role_pong_back){
if(tx_ok) {
printf("Ack Payload Sent\n");
}
uint8_t pipeNo, gotByte;
if( radio.available(&pipeNo)){
radio.read( &gotByte, 1 );
gotByte += 1;
radio.writeAckPayload(pipeNo,&gotByte, 1 );
printf("Loaded next response %d \n\r", gotByte);
}
}
}
int main(int argc, char** argv){
cout << "RPi/RF24/examples/gettingstarted_call_response\n";
radio.begin();
radio.enableAckPayload(); // Allow optional ack payloads
radio.enableDynamicPayloads();
radio.printDetails(); // Dump the configuration of the rf unit for debugging
/********* Role chooser ***********/
printf("\n ************ Role Setup ***********\n");
string input = "";
char myChar = {0};
cout << "Choose a role: Enter 0 for pong_back, 1 for ping_out (CTRL+C to exit)\n>";
getline(cin,input);
if(input.length() == 1) {
myChar = input[0];
if(myChar == '0'){
cout << "Role: Pong Back, awaiting transmission " << endl << endl;
}else{ cout << "Role: Ping Out, starting transmission " << endl << endl;
role = role_ping_out;
}
}
/***********************************/
// This opens two pipes for these two nodes to communicate
// back and forth.
if ( !radioNumber ) {
radio.openWritingPipe(addresses[0]);
radio.openReadingPipe(1,addresses[1]);
}else{
radio.openWritingPipe(addresses[1]);
radio.openReadingPipe(1,addresses[0]);
}
radio.startListening();
radio.writeAckPayload(1,&counter,1);
attachInterrupt(interruptPin, INT_EDGE_FALLING, intHandler); //Attach interrupt to bcm pin 23
// forever loop
while (1){
/****************** Ping Out Role ***************************/
if (role == role_ping_out){ // Radio is in ping mode
//uint8_t gotByte; // Initialize a variable for the incoming response
radio.stopListening(); // First, stop listening so we can talk.
printf("Now sending %d as payload. ",counter); // Use a simple byte counter as payload
timer = millis(); // Record the current microsecond count
radio.startWrite(&counter,1,false); // Send the counter variable to the other radio
sleep(1); // Try again later
}
/****************** Pong Back Role ***************************/
} //while 1
} //main