Tasmota/lib/IRremoteESP8266-2.6.0/src/ir_Fujitsu.cpp
Theo Arends 5df4931add Update IRRemote library to 2.6.0
Update IRRemote library from 2.5.2 to 2.6.0
2019-05-27 14:11:01 +02:00

557 lines
16 KiB
C++

// Copyright 2017 Jonny Graham, David Conran
#include "ir_Fujitsu.h"
#include <algorithm>
#ifndef ARDUINO
#include <string>
#endif
#include "IRsend.h"
#include "IRutils.h"
// Fujitsu A/C support added by Jonny Graham & David Conran
// Equipment it seems compatible with:
// * Fujitsu ASYG30LFCA with remote AR-RAH2E
// * Fujitsu AST9RSGCW with remote AR-DB1
// * <Add models (A/C & remotes) you've gotten it working with here>
// Ref:
// These values are based on averages of measurements
const uint16_t kFujitsuAcHdrMark = 3324;
const uint16_t kFujitsuAcHdrSpace = 1574;
const uint16_t kFujitsuAcBitMark = 448;
const uint16_t kFujitsuAcOneSpace = 1182;
const uint16_t kFujitsuAcZeroSpace = 390;
const uint16_t kFujitsuAcMinGap = 8100;
#if SEND_FUJITSU_AC
// Send a Fujitsu A/C message.
//
// Args:
// data: An array of bytes containing the IR command.
// nbytes: Nr. of bytes of data in the array. Typically one of:
// kFujitsuAcStateLength
// kFujitsuAcStateLength - 1
// kFujitsuAcStateLengthShort
// kFujitsuAcStateLengthShort - 1
// repeat: Nr. of times the message is to be repeated.
// (Default = kFujitsuAcMinRepeat).
//
// Status: BETA / Appears to be working.
//
void IRsend::sendFujitsuAC(unsigned char data[], uint16_t nbytes,
uint16_t repeat) {
sendGeneric(kFujitsuAcHdrMark, kFujitsuAcHdrSpace, kFujitsuAcBitMark,
kFujitsuAcOneSpace, kFujitsuAcBitMark, kFujitsuAcZeroSpace,
kFujitsuAcBitMark, kFujitsuAcMinGap, data, nbytes, 38, false,
repeat, 50);
}
#endif // SEND_FUJITSU_AC
// Code to emulate Fujitsu A/C IR remote control unit.
// Initialise the object.
IRFujitsuAC::IRFujitsuAC(uint16_t pin, fujitsu_ac_remote_model_t model)
: _irsend(pin) {
setModel(model);
stateReset();
}
void IRFujitsuAC::setModel(fujitsu_ac_remote_model_t model) {
_model = model;
switch (model) {
case ARDB1:
_state_length = kFujitsuAcStateLength - 1;
_state_length_short = kFujitsuAcStateLengthShort - 1;
break;
default:
_state_length = kFujitsuAcStateLength;
_state_length_short = kFujitsuAcStateLengthShort;
}
}
// Reset the state of the remote to a known good state/sequence.
void IRFujitsuAC::stateReset() {
_temp = 24;
_fanSpeed = kFujitsuAcFanHigh;
_mode = kFujitsuAcModeCool;
_swingMode = kFujitsuAcSwingBoth;
_cmd = kFujitsuAcCmdTurnOn;
buildState();
}
// Configure the pin for output.
void IRFujitsuAC::begin() { _irsend.begin(); }
#if SEND_FUJITSU_AC
// Send the current desired state to the IR LED.
void IRFujitsuAC::send(const uint16_t repeat) {
getRaw();
_irsend.sendFujitsuAC(remote_state, getStateLength(), repeat);
}
#endif // SEND_FUJITSU_AC
void IRFujitsuAC::buildState() {
remote_state[0] = 0x14;
remote_state[1] = 0x63;
remote_state[2] = 0x00;
remote_state[3] = 0x10;
remote_state[4] = 0x10;
bool fullCmd = false;
switch (_cmd) {
case kFujitsuAcCmdTurnOff:
remote_state[5] = 0x02;
break;
case kFujitsuAcCmdStepHoriz:
remote_state[5] = 0x79;
break;
case kFujitsuAcCmdStepVert:
remote_state[5] = 0x6C;
break;
default:
switch (_model) {
case ARRAH2E:
remote_state[5] = 0xFE;
break;
case ARDB1:
remote_state[5] = 0xFC;
break;
}
fullCmd = true;
break;
}
if (fullCmd) { // long codes
uint8_t tempByte = _temp - kFujitsuAcMinTemp;
// Nr. of bytes in the message after this byte.
remote_state[6] = _state_length - 7;
remote_state[7] = 0x30;
remote_state[8] = (_cmd == kFujitsuAcCmdTurnOn) | (tempByte << 4);
remote_state[9] = _mode | 0 << 4; // timer off
remote_state[10] = _fanSpeed | _swingMode << 4;
remote_state[11] = 0; // timerOff values
remote_state[12] = 0; // timerOff/On values
remote_state[13] = 0; // timerOn values
if (_model == ARRAH2E)
remote_state[14] = 0x20;
else
remote_state[14] = 0x00;
uint8_t checksum = 0;
uint8_t checksum_complement = 0;
if (_model == ARRAH2E) {
checksum = sumBytes(remote_state + _state_length_short,
_state_length - _state_length_short - 1);
} else if (_model == ARDB1) {
checksum = sumBytes(remote_state, _state_length - 1);
checksum_complement = 0x9B;
}
// and negate the checksum and store it in the last byte.
remote_state[_state_length - 1] = checksum_complement - checksum;
} else { // short codes
if (_model == ARRAH2E)
// The last byte is the inverse of penultimate byte
remote_state[_state_length_short - 1] =
~remote_state[_state_length_short - 2];
// Zero the rest of the state.
for (uint8_t i = _state_length_short; i < kFujitsuAcStateLength; i++)
remote_state[i] = 0;
}
}
uint8_t IRFujitsuAC::getStateLength() {
buildState(); // Force an update of the internal state.
if ((_model == ARRAH2E && remote_state[5] != 0xFE) ||
(_model == ARDB1 && remote_state[5] != 0xFC))
return _state_length_short;
else
return _state_length;
}
// Return a pointer to the internal state date of the remote.
uint8_t* IRFujitsuAC::getRaw() {
buildState();
return remote_state;
}
void IRFujitsuAC::buildFromState(const uint16_t length) {
switch (length) {
case kFujitsuAcStateLength - 1:
case kFujitsuAcStateLengthShort - 1:
setModel(ARDB1);
break;
default:
setModel(ARRAH2E);
}
switch (remote_state[6]) {
case 8:
setModel(ARDB1);
break;
case 9:
setModel(ARRAH2E);
break;
}
setTemp((remote_state[8] >> 4) + kFujitsuAcMinTemp);
if (remote_state[8] & 0x1)
setCmd(kFujitsuAcCmdTurnOn);
else
setCmd(kFujitsuAcCmdStayOn);
setMode(remote_state[9] & 0b111);
setFanSpeed(remote_state[10] & 0b111);
setSwing(remote_state[10] >> 4);
switch (remote_state[5]) {
case kFujitsuAcCmdTurnOff:
case kFujitsuAcCmdStepHoriz:
case kFujitsuAcCmdStepVert:
setCmd(remote_state[5]);
break;
}
}
bool IRFujitsuAC::setRaw(const uint8_t newState[], const uint16_t length) {
if (length > kFujitsuAcStateLength) return false;
for (uint16_t i = 0; i < kFujitsuAcStateLength; i++) {
if (i < length)
remote_state[i] = newState[i];
else
remote_state[i] = 0;
}
buildFromState(length);
return true;
}
// Set the requested power state of the A/C to off.
void IRFujitsuAC::off() { _cmd = kFujitsuAcCmdTurnOff; }
void IRFujitsuAC::stepHoriz() {
switch (_model) {
case ARDB1:
break; // This remote doesn't have a horizontal option.
default:
_cmd = kFujitsuAcCmdStepHoriz;
}
}
void IRFujitsuAC::stepVert() { _cmd = kFujitsuAcCmdStepVert; }
// Set the requested command of the A/C.
void IRFujitsuAC::setCmd(uint8_t cmd) {
switch (cmd) {
case kFujitsuAcCmdTurnOff:
case kFujitsuAcCmdTurnOn:
case kFujitsuAcCmdStayOn:
case kFujitsuAcCmdStepVert:
_cmd = cmd;
break;
case kFujitsuAcCmdStepHoriz:
if (_model != ARDB1) // AR-DB1 remote doesn't have step horizontal.
_cmd = cmd;
// FALLTHRU
default:
_cmd = kFujitsuAcCmdStayOn;
break;
}
}
uint8_t IRFujitsuAC::getCmd() { return _cmd; }
bool IRFujitsuAC::getPower() { return _cmd != kFujitsuAcCmdTurnOff; }
// Set the temp. in deg C
void IRFujitsuAC::setTemp(uint8_t temp) {
temp = std::max((uint8_t)kFujitsuAcMinTemp, temp);
temp = std::min((uint8_t)kFujitsuAcMaxTemp, temp);
_temp = temp;
}
uint8_t IRFujitsuAC::getTemp() { return _temp; }
// Set the speed of the fan
void IRFujitsuAC::setFanSpeed(uint8_t fanSpeed) {
if (fanSpeed > kFujitsuAcFanQuiet)
fanSpeed = kFujitsuAcFanHigh; // Set the fan to maximum if out of range.
_fanSpeed = fanSpeed;
}
uint8_t IRFujitsuAC::getFanSpeed() { return _fanSpeed; }
// Set the requested climate operation mode of the a/c unit.
void IRFujitsuAC::setMode(uint8_t mode) {
if (mode > kFujitsuAcModeHeat)
mode = kFujitsuAcModeHeat; // Set the mode to maximum if out of range.
_mode = mode;
}
uint8_t IRFujitsuAC::getMode() { return _mode; }
// Set the requested swing operation mode of the a/c unit.
void IRFujitsuAC::setSwing(uint8_t swingMode) {
switch (_model) {
case ARDB1:
// Set the mode to max if out of range
if (swingMode > kFujitsuAcSwingVert) swingMode = kFujitsuAcSwingVert;
break;
case ARRAH2E:
default:
// Set the mode to max if out of range
if (swingMode > kFujitsuAcSwingBoth) swingMode = kFujitsuAcSwingBoth;
}
_swingMode = swingMode;
}
uint8_t IRFujitsuAC::getSwing() { return _swingMode; }
bool IRFujitsuAC::validChecksum(uint8_t state[], uint16_t length) {
uint8_t sum = 0;
uint8_t sum_complement = 0;
uint8_t checksum = state[length - 1];
switch (length) {
case kFujitsuAcStateLengthShort: // ARRAH2E
return state[length - 1] == (uint8_t)~state[length - 2];
case kFujitsuAcStateLength - 1: // ARDB1
sum = sumBytes(state, length - 1);
sum_complement = 0x9B;
break;
case kFujitsuAcStateLength: // ARRAH2E
sum = sumBytes(state + kFujitsuAcStateLengthShort,
length - 1 - kFujitsuAcStateLengthShort);
break;
default: // Includes ARDB1 short.
return true; // Assume the checksum is valid for other lengths.
}
return checksum == (uint8_t)(sum_complement - sum); // Does it match?
}
// Convert a standard A/C mode into its native mode.
uint8_t IRFujitsuAC::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool:
return kFujitsuAcModeCool;
case stdAc::opmode_t::kHeat:
return kFujitsuAcModeHeat;
case stdAc::opmode_t::kDry:
return kFujitsuAcModeDry;
case stdAc::opmode_t::kFan:
return kFujitsuAcModeFan;
default:
return kFujitsuAcModeAuto;
}
}
// Convert a standard A/C Fan speed into its native fan speed.
uint8_t IRFujitsuAC::convertFan(stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin:
return kFujitsuAcFanQuiet;
case stdAc::fanspeed_t::kLow:
return kFujitsuAcFanLow;
case stdAc::fanspeed_t::kMedium:
return kFujitsuAcFanMed;
case stdAc::fanspeed_t::kHigh:
case stdAc::fanspeed_t::kMax:
return kFujitsuAcFanHigh;
default:
return kFujitsuAcFanAuto;
}
}
// Convert the internal state into a human readable string.
#ifdef ARDUINO
String IRFujitsuAC::toString() {
String result = "";
#else
std::string IRFujitsuAC::toString() {
std::string result = "";
#endif // ARDUINO
result += F("Power: ");
if (getPower())
result += F("On");
else
result += F("Off");
result += F(", Mode: ");
result += uint64ToString(getMode());
switch (getMode()) {
case kFujitsuAcModeAuto:
result += F(" (AUTO)");
break;
case kFujitsuAcModeCool:
result += F(" (COOL)");
break;
case kFujitsuAcModeHeat:
result += F(" (HEAT)");
break;
case kFujitsuAcModeDry:
result += F(" (DRY)");
break;
case kFujitsuAcModeFan:
result += F(" (FAN)");
break;
default:
result += F(" (UNKNOWN)");
}
result += F(", Temp: ");
result += uint64ToString(getTemp());
result += F("C, Fan: ");
result += uint64ToString(getFanSpeed());
switch (getFanSpeed()) {
case kFujitsuAcFanAuto:
result += F(" (AUTO)");
break;
case kFujitsuAcFanHigh:
result += F(" (HIGH)");
break;
case kFujitsuAcFanMed:
result += F(" (MED)");
break;
case kFujitsuAcFanLow:
result += F(" (LOW)");
break;
case kFujitsuAcFanQuiet:
result += F(" (QUIET)");
break;
}
result += F(", Swing: ");
switch (getSwing()) {
case kFujitsuAcSwingOff:
result += F("Off");
break;
case kFujitsuAcSwingVert:
result += F("Vert");
break;
case kFujitsuAcSwingHoriz:
result += F("Horiz");
break;
case kFujitsuAcSwingBoth:
result += F("Vert + Horiz");
break;
default:
result += F("UNKNOWN");
}
result += F(", Command: ");
switch (getCmd()) {
case kFujitsuAcCmdStepHoriz:
result += F("Step vane horizontally");
break;
case kFujitsuAcCmdStepVert:
result += F("Step vane vertically");
break;
default:
result += F("N/A");
}
return result;
}
#if DECODE_FUJITSU_AC
// Decode a Fujitsu AC IR message if possible.
// Places successful decode information in the results pointer.
// Args:
// results: Ptr to the data to decode and where to store the decode result.
// nbits: The number of data bits to expect. Typically kFujitsuAcBits.
// strict: Flag to indicate if we strictly adhere to the specification.
// Returns:
// boolean: True if it can decode it, false if it can't.
//
// Status: ALPHA / Untested.
//
// Ref:
//
bool IRrecv::decodeFujitsuAC(decode_results* results, uint16_t nbits,
bool strict) {
uint16_t offset = kStartOffset;
uint16_t dataBitsSoFar = 0;
// Have we got enough data to successfully decode?
if (results->rawlen < (2 * kFujitsuAcMinBits) + kHeader + kFooter - 1)
return false; // Can't possibly be a valid message.
// Compliance
if (strict) {
switch (nbits) {
case kFujitsuAcBits:
case kFujitsuAcBits - 8:
case kFujitsuAcMinBits:
case kFujitsuAcMinBits + 8:
break;
default:
return false; // Must be called with the correct nr. of bits.
}
}
// Header
if (!matchMark(results->rawbuf[offset++], kFujitsuAcHdrMark)) return false;
if (!matchSpace(results->rawbuf[offset++], kFujitsuAcHdrSpace)) return false;
// Data (Fixed signature)
match_result_t data_result =
matchData(&(results->rawbuf[offset]), kFujitsuAcMinBits - 8,
kFujitsuAcBitMark, kFujitsuAcOneSpace, kFujitsuAcBitMark,
kFujitsuAcZeroSpace, kTolerance, kMarkExcess, false);
if (data_result.success == false) return false; // Fail
if (data_result.data != 0x1010006314) return false; // Signature failed.
dataBitsSoFar += kFujitsuAcMinBits - 8;
offset += data_result.used;
results->state[0] = 0x14;
results->state[1] = 0x63;
results->state[2] = 0x00;
results->state[3] = 0x10;
results->state[4] = 0x10;
// Keep reading bytes until we either run out of message or state to fill.
for (uint16_t i = 5;
offset <= results->rawlen - 16 && i < kFujitsuAcStateLength;
i++, dataBitsSoFar += 8, offset += data_result.used) {
data_result = matchData(
&(results->rawbuf[offset]), 8, kFujitsuAcBitMark, kFujitsuAcOneSpace,
kFujitsuAcBitMark, kFujitsuAcZeroSpace, kTolerance, kMarkExcess, false);
if (data_result.success == false) break; // Fail
results->state[i] = data_result.data;
}
// Footer
if (offset > results->rawlen ||
!matchMark(results->rawbuf[offset++], kFujitsuAcBitMark))
return false;
// The space is optional if we are out of capture.
if (offset < results->rawlen &&
!matchAtLeast(results->rawbuf[offset], kFujitsuAcMinGap))
return false;
// Compliance
if (strict) {
if (dataBitsSoFar != nbits) return false;
}
results->decode_type = FUJITSU_AC;
results->bits = dataBitsSoFar;
// Compliance
switch (dataBitsSoFar) {
case kFujitsuAcMinBits:
// Check if this values indicate that this should have been a long state
// message.
if (results->state[5] == 0xFC) return false;
return true; // Success
case kFujitsuAcMinBits + 8:
// Check if this values indicate that this should have been a long state
// message.
if (results->state[5] == 0xFE) return false;
// The last byte needs to be the inverse of the penultimate byte.
if (results->state[5] != (uint8_t)~results->state[6]) return false;
return true; // Success
case kFujitsuAcBits - 8:
// Long messages of this size require this byte be correct.
if (results->state[5] != 0xFC) return false;
break;
case kFujitsuAcBits:
// Long messages of this size require this byte be correct.
if (results->state[5] != 0xFE) return false;
break;
default:
return false; // Unexpected size.
}
if (!IRFujitsuAC::validChecksum(results->state, dataBitsSoFar / 8))
return false;
// Success
return true; // All good.
}
#endif // DECODE_FUJITSU_AC