Tasmota/tasmota/tasmota_support/support_wifi.ino
SteWers ec6e1dd2a6
Optimize WiFi strength indicator (#23924)
* Optimize WiFi strength indicator

- Simplify `WifiGetRssiAsQuality`
- Make WiFi strength indicator in web status line color independent
- Correct count of visible bars in strength indicator
- Save flash space (64 bytes; with WiFi status line 80 bytes)
- Highlight connected SSID/AP in settings with compiler option `USE_HIGHLIGHT_CONNECTED_AP` (needs additional 256 bytes)

* Change format of RSSI display
2025-09-21 15:26:03 +02:00

2100 lines
75 KiB
C++

/*
support_wifi.ino - wifi support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*********************************************************************************************\
* Wifi
\*********************************************************************************************/
// Enable one of three below options for wifi re-connection debugging
//#define WIFI_FORCE_RF_CAL_ERASE // Erase rf calibration sector on restart only
//#define WIFI_RF_MODE_RF_CAL // Set RF_MODE to RF_CAL for restart and deepsleep during user_rf_pre_init
//#define WIFI_RF_PRE_INIT // Set RF_MODE to RF_CAL for restart, deepsleep and power on during user_rf_pre_init
#ifndef WIFI_RSSI_THRESHOLD
#define WIFI_RSSI_THRESHOLD 10 // Difference in dB between current network and scanned network
#endif
#ifndef WIFI_RESCAN_MINUTES
#define WIFI_RESCAN_MINUTES 44 // Number of minutes between wifi network rescan
#endif
#ifndef WIFI_RETRY_SECONDS
#define WIFI_RETRY_SECONDS 20 // Number of seconds connection to wifi network will retry
#endif
const uint8_t WIFI_CONFIG_SEC = 180; // seconds before restart
const uint8_t WIFI_CHECK_SEC = 20; // seconds
const uint8_t WIFI_RETRY_OFFSET_SEC = WIFI_RETRY_SECONDS; // seconds
#include <ESP8266WiFi.h> // Wifi, MQTT, Ota, WifiManager
#include "lwip/dns.h"
#ifdef ESP32
#include "esp_netif.h"
#endif // ESP32
/**
* Converts WiFi RSSI (signal strength) to a quality percentage
*
* @param rssi The RSSI value in dBm (typically negative, e.g. -70)
* @return Quality as a percentage (0-100)
*
* The function maps RSSI values to a percentage scale:
* - RSSI <= -100 dBm: 0% quality (very poor/no signal)
* - RSSI >= -50 dBm: 100% quality (excellent signal)
* - Values in between are linearly mapped (each 2.5 dBm = 5%)
*/
int WifiGetRssiAsQuality(int rssi) {
if (rssi <= -100) { return 0; }
if (rssi >= -50) { return 100; }
return 2 * (rssi + 100);
}
// 0 1 2 3 4
const char kWifiEncryptionTypes[] PROGMEM = "OPEN|WEP|WPA/PSK|WPA2/PSK|WPA/WPA2/PSK"
#ifdef ESP32
// 5 6 7 8
"|WPA2-Enterprise|WPA3/PSK|WPA2/WPA3/PSK|WAPI/PSK"
#endif // ESP32
;
/**
* Returns a string representation of the WiFi encryption type
*
* @param i Index of the network in the WiFi scan results
* @return String containing the encryption type (e.g., "WPA2/PSK")
*
* The function maps the encryption type values from WiFi.encryptionType() to
* human-readable strings defined in kWifiEncryptionTypes.
*
* ESP8266 and ESP32 use different encryption type enumerations, so this function
* normalizes them to a consistent set of values.
*/
String WifiEncryptionType(uint32_t i) {
#ifdef ESP8266
// Reference. WiFi.encryptionType =
// 2 : ENC_TYPE_TKIP - WPA / PSK
// 4 : ENC_TYPE_CCMP - WPA2 / PSK
// 5 : ENC_TYPE_WEP - WEP
// 7 : ENC_TYPE_NONE - open network
// 8 : ENC_TYPE_AUTO - WPA / WPA2 / PSK
uint8_t typea[] = { 0,2,0,3,1,0,0,4 };
int type = typea[WiFi.encryptionType(i) -1 &7];
#else
int type = WiFi.encryptionType(i);
#endif
if ((type < 0) || (type > 8)) { type = 0; }
char stemp1[20];
GetTextIndexed(stemp1, sizeof(stemp1), type, kWifiEncryptionTypes);
return stemp1;
}
/**
* Manages the WiFi configuration timeout counter
*
* @return Current state of the WiFi configuration counter (true if active, false if not)
*
* If the WiFi configuration counter is active, this function resets it to the maximum
* value (WIFI_CONFIG_SEC). This extends the time available for configuration before
* the device automatically restarts.
*
* The function is typically called during user interaction with WiFi configuration
* to prevent timeout while the user is actively configuring.
*/
bool WifiConfigCounter(void)
{
if (Wifi.config_counter) {
Wifi.config_counter = WIFI_CONFIG_SEC;
}
return (Wifi.config_counter);
}
/**
* Initiates a WiFi configuration mode
*
* @param type The configuration mode to activate (from enum WifiConfigModes)
*
* This function handles the transition to different WiFi configuration modes:
* - WIFI_RESTART: Triggers a device restart
* - WIFI_SERIAL: Enables configuration via serial for 3 minutes
* - WIFI_MANAGER/WIFI_MANAGER_RESET_ONLY: Activates the WiFi manager web interface
*
* The function sets up a timeout counter (Wifi.config_counter) that will trigger
* appropriate actions when it expires. It also disconnects from any current WiFi
* connection before changing modes.
*
* Error handling:
* - Ignores requests for WIFI_RETRY or WIFI_WAIT if already in configuration mode
* - Falls back to WIFI_SERIAL if WIFI_MANAGER is requested but webserver is disabled
*/
void WifiConfig(uint8_t type)
{
if (!Wifi.config_type) {
if ((WIFI_RETRY == type) || (WIFI_WAIT == type)) { return; }
#ifdef USE_EMULATION
UdpDisconnect();
#endif // USE_EMULATION
WiFi.disconnect(); // Solve possible Wifi hangs
delay(100);
Wifi.config_type = type;
#ifndef USE_WEBSERVER
if (WIFI_MANAGER == Wifi.config_type) {
Wifi.config_type = WIFI_SERIAL;
}
#endif // USE_WEBSERVER
Wifi.config_counter = WIFI_CONFIG_SEC; // Allow up to WIFI_CONFIG_SECS seconds for phone to provide ssid/pswd
Wifi.counter = Wifi.config_counter +5;
TasmotaGlobal.blinks = 255;
if (WIFI_RESTART == Wifi.config_type) {
TasmotaGlobal.restart_flag = 2;
}
else if (WIFI_SERIAL == Wifi.config_type) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_WIFI D_WCFG_6_SERIAL " " D_ACTIVE_FOR_3_MINUTES));
}
#ifdef USE_WEBSERVER
else if (WIFI_MANAGER == Wifi.config_type || WIFI_MANAGER_RESET_ONLY == Wifi.config_type) {
WifiManagerBegin(WIFI_MANAGER_RESET_ONLY == Wifi.config_type);
}
#endif // USE_WEBSERVER
}
}
#ifdef CONFIG_IDF_TARGET_ESP32C3
// https://github.com/espressif/arduino-esp32/issues/6264#issuecomment-1040147331
// There's an include for this but it doesn't define the function if it doesn't think it needs it, so manually declare the function
extern "C" void phy_bbpll_en_usb(bool en);
#endif // CONFIG_IDF_TARGET_ESP32C3
/**
* Sets the WiFi operating mode with proper handling for different ESP platforms
*
* @param wifi_mode The WiFi mode to set (WIFI_OFF, WIFI_STA, WIFI_AP, WIFI_AP_STA)
*
* This function handles platform-specific requirements when changing WiFi modes:
* - For ESP32-C3: Enables USB serial-jtag after WiFi startup
* - Ensures the hostname is set before mode changes
* - Handles proper sleep/wake transitions for power management
*
* The function includes retry logic if setting the mode fails on the first attempt.
* For WIFI_OFF mode, it properly puts the WiFi into deep sleep to save power.
*
* Error handling:
* - Retries mode setting up to 2 times if it fails
* - Adds delay between attempts to allow hardware to stabilize
*/
void WifiSetMode(WiFiMode_t wifi_mode) {
#ifdef CONFIG_IDF_TARGET_ESP32C3
// https://github.com/espressif/arduino-esp32/issues/6264#issuecomment-1094376906
// This brings the USB serial-jtag back to life. Suggest doing this immediately after wifi startup.
phy_bbpll_en_usb(true);
#endif // CONFIG_IDF_TARGET_ESP32C3
if (WiFi.getMode() == wifi_mode) { return; }
if (wifi_mode != WIFI_OFF) {
WiFi.hostname(TasmotaGlobal.hostname); // ESP32 needs this here (before WiFi.mode) for core 2.0.0
// See: https://github.com/esp8266/Arduino/issues/6172#issuecomment-500457407
WiFiHelper::forceSleepWake(); // Make sure WiFi is really active.
}
uint32_t retry = 2;
while (!WiFi.mode(wifi_mode) && retry--) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_WIFI "Retry set Mode..."));
delay(100);
}
if (wifi_mode == WIFI_OFF) {
delay(1000);
WiFiHelper::forceSleepBegin();
}
delay(100); // Must allow for some time to init.
}
/**
* Configures the WiFi sleep mode based on system settings
*
* This function sets the appropriate WiFi sleep mode to balance power consumption
* and network responsiveness according to user settings:
*
* - WIFI_NONE_SLEEP: No sleep (highest power consumption, fastest response)
* - WIFI_LIGHT_SLEEP: Light sleep during idle times (medium power saving)
* - WIFI_MODEM_SLEEP: Default sleep mode (moderate power saving)
*
* The sleep mode is determined by:
* - TasmotaGlobal.sleep: Global sleep setting
* - Settings->flag5.wifi_no_sleep: Option to disable sleep
* - Settings->flag3.sleep_normal: SetOption60 - Use normal sleep instead of dynamic sleep
* - TasmotaGlobal.wifi_stay_asleep: Flag to maintain sleep state
*
* Note: Sleep modes affect power consumption and network responsiveness.
* Some ESP32 variants may have specific sleep behavior requirements.
*/
void WiFiSetSleepMode(void)
{
/* Excerpt from the esp8266 non os sdk api reference (v2.2.1):
* Sets sleep type for power saving. Set WIFI_NONE_SLEEP to disable power saving.
* - Default mode: WIFI_MODEM_SLEEP.
* - In order to lower the power comsumption, ESP8266 changes the TCP timer
* tick from 250ms to 3s in WIFI_LIGHT_SLEEP mode, which leads to increased timeout for
* TCP timer. Therefore, the WIFI_MODEM_SLEEP or deep-sleep mode should be used
* where there is a requirement for the accurancy of the TCP timer.
*
* Sleep is disabled in core 2.4.1 and 2.4.2 as there are bugs in their SDKs
* See https://github.com/arendst/Tasmota/issues/2559
*/
// Sleep explanation: https://github.com/esp8266/Arduino/blob/3f0c601cfe81439ce17e9bd5d28994a7ed144482/libraries/ESP8266WiFi/src/ESP8266WiFiGeneric.cpp#L255
/*
if (TasmotaGlobal.sleep && Settings->flag3.sleep_normal) { // SetOption60 - Enable normal sleep instead of dynamic sleep
WiFiHelper::setSleepMode(WIFI_LIGHT_SLEEP); // Allow light sleep during idle times
} else {
WiFiHelper::setSleepMode(WIFI_MODEM_SLEEP); // Disable sleep (Esp8288/Arduino core and sdk default)
}
*/
bool wifi_no_sleep = Settings->flag5.wifi_no_sleep;
//#ifdef CONFIG_IDF_TARGET_ESP32C3
// wifi_no_sleep = true; // Temporary patch for IDF4.4, wifi sleeping may cause wifi drops
//#endif
if (0 == TasmotaGlobal.sleep || wifi_no_sleep) {
if (!TasmotaGlobal.wifi_stay_asleep) {
WiFiHelper::setSleepMode(WIFI_NONE_SLEEP); // Disable sleep
}
} else {
if (Settings->flag3.sleep_normal) { // SetOption60 - Enable normal sleep instead of dynamic sleep
WiFiHelper::setSleepMode(WIFI_LIGHT_SLEEP); // Allow light sleep during idle times
} else {
WiFiHelper::setSleepMode(WIFI_MODEM_SLEEP); // Sleep (Esp8288/Arduino core and sdk default)
}
}
delay(100);
}
/**
* Initiates a WiFi connection with the specified parameters
*
* @param flag WiFi AP selection: 0=AP1, 1=AP2, 2=Toggle between APs, 3=Current AP
* @param channel Optional WiFi channel to connect on (0 for auto)
*
* This function handles the WiFi connection process:
* 1. Disconnects from any current connections
* 2. Sets the WiFi mode to station mode
* 3. Configures sleep mode and power settings
* 4. Attempts to connect to the selected access point
*
* The function supports multiple connection scenarios:
* - Connecting to a specific AP (primary or backup)
* - Toggling between configured APs
* - Connecting to a specific channel and BSSID for multi-AP installations
* - Using static IP configuration if specified in settings
*
* Error handling:
* - Skips empty SSIDs by toggling to the alternate AP
* - Logs connection details for troubleshooting
* - Optionally waits for connection result based on settings
*/
void WifiBegin(uint8_t flag, uint8_t channel) {
#ifdef USE_EMULATION
UdpDisconnect();
#endif // USE_EMULATION
WiFi.persistent(false); // Solve possible wifi init errors (re-add at 6.2.1.16 #4044, #4083)
#if defined(USE_IPV6) && defined(ESP32)
WiFi.enableIPv6(true);
#endif
#ifdef USE_WIFI_RANGE_EXTENDER
if (WiFi.getMode() != WIFI_AP_STA || !RgxApUp()) { // Preserve range extender connections (#17103)
#endif // USE_WIFI_RANGE_EXTENDER
WiFi.disconnect(true); // Delete SDK wifi config
delay(200);
WifiSetMode(WIFI_STA); // Disable AP mode
#ifdef USE_WIFI_RANGE_EXTENDER
}
#endif // USE_WIFI_RANGE_EXTENDER
WiFiSetSleepMode();
WifiSetOutputPower();
// if (WiFiHelper::getPhyMode() != WIFI_PHY_MODE_11N) { WiFiHelper::setPhyMode(WIFI_PHY_MODE_11N); } // B/G/N
// if (WiFiHelper::getPhyMode() != WIFI_PHY_MODE_11G) { WiFiHelper::setPhyMode(WIFI_PHY_MODE_11G); } // B/G
#ifdef ESP32
if (Wifi.phy_mode) {
WiFiHelper::setPhyMode(WiFiPhyMode_t(Wifi.phy_mode)); // 1-B/2-BG/3-BGN/4-BGNAX
}
#endif
WiFi.setAutoReconnect(true);
switch (flag) {
case 0: // AP1
case 1: // AP2
Settings->sta_active = flag;
break;
case 2: // Toggle
Settings->sta_active ^= 1;
} // 3: Current AP
if (!strlen(SettingsText(SET_STASSID1 + Settings->sta_active))) {
Settings->sta_active ^= 1; // Skip empty SSID
}
if (Settings->ipv4_address[0]) {
// AddLog(LOG_LEVEL_INFO, ">>>1: Wifi Config DNS %_I %_I", Settings->ipv4_address[3], Settings->ipv4_address[4]);
WiFi.config(Settings->ipv4_address[0], Settings->ipv4_address[1], Settings->ipv4_address[2], Settings->ipv4_address[3], Settings->ipv4_address[4]); // Set static IP
}
WiFi.hostname(TasmotaGlobal.hostname); // ESP8266 needs this here (after WiFi.mode)
char stemp[40] = { 0 };
if (channel) {
WiFiHelper::begin(SettingsText(SET_STASSID1 + Settings->sta_active), SettingsText(SET_STAPWD1 + Settings->sta_active), channel, Wifi.bssid);
// Add connected BSSID and channel for multi-AP installations
char hex_char[18];
snprintf_P(stemp, sizeof(stemp), PSTR(" Channel %d BSSId %s"), channel, ToHex_P((unsigned char*)Wifi.bssid, 6, hex_char, sizeof(hex_char), ':'));
} else {
WiFiHelper::begin(SettingsText(SET_STASSID1 + Settings->sta_active), SettingsText(SET_STAPWD1 + Settings->sta_active));
}
delay(500);
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_WIFI D_CONNECTING_TO_AP "%d %s%s " D_IN_MODE " %s " D_AS " %s..."),
Settings->sta_active +1, SettingsText(SET_STASSID1 + Settings->sta_active), stemp, WifiGetPhyMode().c_str(), TasmotaGlobal.hostname);
if (Settings->flag5.wait_for_wifi_result) { // SetOption142 - (Wifi) Wait 1 second for wifi connection solving some FRITZ!Box modem issues (1)
WiFi.waitForConnectResult(1000); // https://github.com/arendst/Tasmota/issues/14985
}
#ifdef CONFIG_ESP_WIFI_REMOTE_ENABLED
HostedMCUStatus();
#endif // CONFIG_ESP_WIFI_REMOTE_ENABLED
}
/**
* Manages WiFi network scanning and connection based on scan results
*
* This function implements a state machine for WiFi scanning operations:
* - States 1-5: Network scanning for automatic connection
* - States 6-69: Network scanning for the wifiscan command
*
* For automatic connection (states 1-5):
* 1. Initializes scan parameters
* 2. Starts an asynchronous WiFi scan
* 3. Processes scan results to find the best network
* 4. Connects to the best available network
*
* For wifiscan command (states 6-69):
* 1. Performs a WiFi scan
* 2. Formats and publishes scan results via MQTT
* 3. Maintains scan results for 1 minute before cleanup
*
* The function selects networks based on:
* - Signal strength (RSSI)
* - Match with configured SSIDs
* - Security type (open networks require no password)
*
* Error handling:
* - Logs scan progress and results
* - Handles scan failures gracefully
* - Manages memory by cleaning up scan results
*/
void WifiBeginAfterScan(void)
{
// Not active
if (0 == Wifi.scan_state) { return; }
// Init scan when not connected
if (1 == Wifi.scan_state) {
memset((void*) &Wifi.bssid, 0, sizeof(Wifi.bssid));
Wifi.best_network_db = -127;
Wifi.scan_state = 3;
}
// Init scan when connected
if (2 == Wifi.scan_state) {
uint8_t* bssid = WiFi.BSSID(); // Get current bssid
memcpy((void*) &Wifi.bssid, (void*) bssid, sizeof(Wifi.bssid));
Wifi.best_network_db = WiFi.RSSI(); // Get current rssi and add threshold
if (Wifi.best_network_db < -WIFI_RSSI_THRESHOLD) {
Wifi.best_network_db += WIFI_RSSI_THRESHOLD;
}
Wifi.scan_state = 3;
}
// Init scan
if (3 == Wifi.scan_state) {
if (WiFi.scanComplete() != WIFI_SCAN_RUNNING) {
WiFi.scanNetworks(true); // Start wifi scan async
Wifi.scan_state++;
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_WIFI "Network (re)scan started..."));
return;
}
}
int8_t wifi_scan_result = WiFi.scanComplete();
// Check scan done
if (4 == Wifi.scan_state) {
if (wifi_scan_result != WIFI_SCAN_RUNNING) {
Wifi.scan_state++;
}
}
// Scan done
if (5 == Wifi.scan_state) {
int32_t channel = 0; // No scan result
int8_t ap = 3; // AP default if not found
uint8_t last_bssid[6]; // Save last bssid
memcpy((void*) &last_bssid, (void*) &Wifi.bssid, sizeof(last_bssid));
if (wifi_scan_result > 0) {
// Networks found
for (uint32_t i = 0; i < wifi_scan_result; ++i) {
String ssid_scan;
int32_t rssi_scan;
uint8_t sec_scan;
uint8_t* bssid_scan;
int32_t chan_scan;
bool hidden_scan;
WiFiHelper::getNetworkInfo(i, ssid_scan, sec_scan, rssi_scan, bssid_scan, chan_scan, hidden_scan);
bool known = false;
uint32_t j;
for (j = 0; j < MAX_SSIDS; j++) {
if (ssid_scan == SettingsText(SET_STASSID1 + j)) { // SSID match
known = true;
if (rssi_scan > Wifi.best_network_db) { // Best network
if (sec_scan == ENC_TYPE_NONE || SettingsText(SET_STAPWD1 + j)) { // Check for passphrase if not open wlan
Wifi.best_network_db = (int8_t)rssi_scan;
channel = chan_scan;
ap = j; // AP1 or AP2
memcpy((void*) &Wifi.bssid, (void*) bssid_scan, sizeof(Wifi.bssid));
}
}
break;
}
}
char hex_char[18];
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_WIFI "Network %d, AP%c, SSId %s, Channel %d, BSSId %s, RSSI %d, Encryption %d"),
i,
(known) ? (j) ? '2' : '1' : '-',
ssid_scan.c_str(),
chan_scan,
ToHex_P((unsigned char*)bssid_scan, 6, hex_char, sizeof(hex_char), ':'),
rssi_scan,
(sec_scan == ENC_TYPE_NONE) ? 0 : 1);
delay(0);
}
WiFi.scanDelete(); // Clean up Ram
delay(0);
}
Wifi.scan_state = 0;
// If bssid changed then (re)connect wifi
for (uint32_t i = 0; i < sizeof(Wifi.bssid); i++) {
if (last_bssid[i] != Wifi.bssid[i]) {
WifiBegin(ap, channel); // 0 (AP1), 1 (AP2) or 3 (default AP)
break;
}
}
}
// Init scan for wifiscan command
if (6 == Wifi.scan_state) {
if (wifi_scan_result != WIFI_SCAN_RUNNING) {
WiFi.scanNetworks(true); // Start wifi scan async
Wifi.scan_state++;
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_WIFI "Network scan started..."));
return;
}
}
// Check scan done
if (7 == Wifi.scan_state) {
if (wifi_scan_result != WIFI_SCAN_RUNNING) {
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_WIFI "Network scan finished..."));
Wifi.scan_state++;
return;
}
}
// Scan done. Show SSId's scan result by MQTT and in console
if (7 < Wifi.scan_state) {
Wifi.scan_state++;
ResponseClear();
int32_t initial_item = (Wifi.scan_state - 9)*10;
if ( wifi_scan_result > initial_item ) {
// Sort networks by RSSI
uint32_t indexes[wifi_scan_result];
for (uint32_t i = 0; i < wifi_scan_result; i++) {
indexes[i] = i;
}
for (uint32_t i = 0; i < wifi_scan_result; i++) {
for (uint32_t j = i + 1; j < wifi_scan_result; j++) {
if (WiFi.RSSI(indexes[j]) > WiFi.RSSI(indexes[i])) {
std::swap(indexes[i], indexes[j]);
}
}
}
delay(0);
// Publish the list
uint32_t end_item = ( wifi_scan_result > initial_item + 10 ) ? initial_item + 10 : wifi_scan_result;
for (uint32_t i = initial_item; i < end_item; i++) {
Response_P(PSTR("{\"" D_CMND_WIFISCAN "\":{\"" D_STATUS5_NETWORK "%d\":{\"" D_SSID "\":\"%s\",\"" D_BSSID "\":\"%s\",\"" D_CHANNEL
"\":\"%d\",\"" D_JSON_SIGNAL "\":\"%d\",\"" D_RSSI "\":\"%d\",\"" D_JSON_ENCRYPTION "\":\"%s\"}}}"),
i+1,
WiFi.SSID(indexes[i]).c_str(),
WiFi.BSSIDstr(indexes[i]).c_str(),
WiFi.channel(indexes[i]),
WiFi.RSSI(indexes[i]),
WifiGetRssiAsQuality(WiFi.RSSI(indexes[i])),
WifiEncryptionType(indexes[i]).c_str());
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_CMND_WIFISCAN));
}
} else if (9 == Wifi.scan_state) {
Response_P(PSTR("{\"" D_CMND_WIFISCAN "\":\"" D_NO_NETWORKS_FOUND "\"}"));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_CMND_WIFISCAN));
}
delay(0);
}
// Wait 1 minute before cleaning the results so the user can ask for the them using wifiscan command (HTTP use-case)
if (69 == Wifi.scan_state) {
//AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_WIFI "Network scan results deleted..."));
Wifi.scan_state = 0;
WiFi.scanDelete(); // Clean up Ram
}
}
/**
* Returns the number of successful WiFi connections since boot
*
* @return Number of successful WiFi connections
*
* This function provides access to the internal counter that tracks
* how many times the device has successfully connected to WiFi networks.
* The counter is incremented each time a connection is established.
*/
uint16_t WifiLinkCount(void)
{
return Wifi.link_count;
}
/**
* Returns the total time the device has been disconnected from WiFi
*
* @return String representation of the total disconnected time
*
* This function calculates the cumulative time the device has spent
* without a WiFi connection since boot. The time is formatted as a
* human-readable duration string (e.g., "1h 23m 45s").
*
* The downtime is tracked by recording timestamps when disconnections
* occur and calculating the difference when connections are restored.
*/
String WifiDowntime(void)
{
return GetDuration(Wifi.downtime);
}
/**
* Updates the WiFi connection state and triggers related events
*
* @param state The new WiFi state (1 = connected, 0 = disconnected)
*
* This function manages the WiFi connection state tracking:
* 1. When connected (state=1):
* - Sets the wifi_connected rules flag
* - Increments the connection counter
* - Updates the total downtime
* 2. When disconnected (state=0):
* - Sets the wifi_disconnected rules flag
* - Records the disconnection timestamp
*
* The function also updates the global state variables:
* - TasmotaGlobal.global_state.wifi_down (inverted state)
* - TasmotaGlobal.global_state.network_down (cleared when WiFi is up)
*
* This state tracking enables proper event handling and metrics for
* WiFi connection reliability.
*/
void WifiSetState(uint8_t state)
{
if (state == TasmotaGlobal.global_state.wifi_down) {
if (state) {
TasmotaGlobal.rules_flag.wifi_connected = 1;
Wifi.link_count++;
Wifi.downtime += UpTime() - Wifi.last_event;
} else {
TasmotaGlobal.rules_flag.wifi_disconnected = 1;
Wifi.last_event = UpTime();
}
}
TasmotaGlobal.global_state.wifi_down = state ^1;
if (!TasmotaGlobal.global_state.wifi_down) {
TasmotaGlobal.global_state.network_down = 0;
}
}
/*****************************************************************************************************\
* IP detection revised for full IPv4 / IPv6 support
*
* In general, each interface (Wifi/Eth) can have 1x IPv4 and
* 2x IPv6 (Global routable address and Link-Local starting witn fe80:...)
*
* We always use an IPv4 address if one is assigned, and revert to
* IPv6 only on networks that are v6 only.
* Ethernet calls can be safely used even if the USE_ETHERNET is not enabled
*
* New APIs:
* - general form is:
* `bool XXXGetIPYYY(IPAddress*)` returns `true` if the address exists and copies the address
* if the pointer is non-null.
* `bool XXXHasIPYYY()` same as above but only returns `true` or `false`
* `String XXXGetIPYYYStr()` returns the IP as a `String` or empty `String` if none
*
* `XXX` can be `Wifi` or `Eth`
* `YYY` can be `` for any address, `v6` for IPv6 global address or `v6LinkLocal` for Link-local
*
* - Legacy `Wifi.localIP()` and `ETH.localIP()` always return IPv4 and nothing on IPv6 only networks
*
* - v4/v6:
* `WifiGetIP`, `WifiGetIPStr`, `WifiHasIP`: get preferred v4/v6 address for Wifi
* `EthernetGetIP`, `EthernetGetIPStr`, `EthernetHasIP`: get preferred v4/v6 for Ethernet
*
* - Main IP to be used dual stack v4/v6
* `hasIP`, `IPGetListeningAddress`, `IPGetListeningAddressStr`: any IP to listen to for Web Server
* IPv4 is always preferred, and Eth is preferred over Wifi.
* `IPForUrl`: converts v4/v6 to use in URL, enclosing v6 in []
*
* - v6 only:
* `WifiGetIPv6`, `WifiGetIPv6Str`, `WifiHasIPv6`
* `WifiGetIPv6LinkLocal`, `WifiGetIPv6LinkLocalStr`
* `EthernetGetIPv6, `EthernetHasIPv6`, `EthernetGetIPv6Str`
* `EthernetGetIPv6LinkLocal`, `EthernetGetIPv6LinkLocalStr`
*
* - v4 only:
* `WifiGetIPv4`, `WifiGetIPv4Str`, `WifiHasIPv4`
* `EthernetGetIPv4`, `EthernetGetIPv4Str`, `EthernetHasIPv4`
*
* - DNS reporting actual values used (not the Settings):
* `DNSGetIP(n)`, `DNSGetIPStr(n)` with n=`0`/`1` (same dns for Wifi and Eth)
\*****************************************************************************************************/
bool WifiGetIP(IPAddress *ip, bool exclude_ap = false);
// IPv4 for Wifi
// Returns only IPv6 global address (no loopback and no link-local)
/**
* Retrieves the IPv4 address of the WiFi interface
*
* @param ip Pointer to store the IPv4 address (can be nullptr to just check existence)
* @return true if a valid IPv4 address exists, false otherwise
*
* This function gets the current IPv4 address of the WiFi interface if connected.
* If the ip parameter is provided, the address is copied to it.
* The function returns true only if a valid (non-zero) IPv4 address exists.
*/
bool WifiGetIPv4(IPAddress *ip)
{
uint32_t wifi_uint = (WL_CONNECTED == WiFi.status()) ? (uint32_t)WiFi.localIP() : 0; // See issue #23115
if (ip != nullptr) { *ip = wifi_uint; }
return wifi_uint != 0;
}
/**
* Checks if the WiFi interface has a valid IPv4 address
*
* @return true if a valid IPv4 address exists, false otherwise
*
* This is a convenience wrapper around WifiGetIPv4() that only checks
* for the existence of an IPv4 address without retrieving it.
*/
bool WifiHasIPv4(void)
{
return WifiGetIPv4(nullptr);
}
/**
* Returns the WiFi IPv4 address as a string
*
* @return String containing the IPv4 address or empty string if none
*
* This function returns the current IPv4 address of the WiFi interface
* formatted as a string (e.g., "192.168.1.100"). If no valid IPv4 address
* exists, an empty string is returned.
*/
String WifiGetIPv4Str(void)
{
IPAddress ip;
return WifiGetIPv4(&ip) ? ip.toString() : String();
}
/**
* Retrieves the IPv4 address of the Ethernet interface
*
* @param ip Pointer to store the IPv4 address (can be nullptr to just check existence)
* @return true if a valid IPv4 address exists, false otherwise
*
* This function gets the current IPv4 address of the Ethernet interface if connected.
* If the ip parameter is provided, the address is copied to it.
* The function returns true only if a valid (non-zero) IPv4 address exists.
*
* On platforms without Ethernet support, this always returns false.
*/
bool EthernetGetIPv4(IPAddress *ip)
{
//#if defined(ESP32) && CONFIG_IDF_TARGET_ESP32 && defined(USE_ETHERNET)
#if defined(ESP32) && defined(USE_ETHERNET)
uint32_t wifi_uint = (uint32_t) EthernetLocalIP();
if (ip != nullptr) { *ip = wifi_uint; }
return wifi_uint != 0;
#else
if (ip != nullptr) { *ip = (uint32_t)0; }
return false;
#endif
}
/**
* Checks if the Ethernet interface has a valid IPv4 address
*
* @return true if a valid IPv4 address exists, false otherwise
*
* This is a convenience wrapper around EthernetGetIPv4() that only checks
* for the existence of an IPv4 address without retrieving it.
*/
bool EthernetHasIPv4(void)
{
return EthernetGetIPv4(nullptr);
}
/**
* Returns the Ethernet IPv4 address as a string
*
* @return String containing the IPv4 address or empty string if none
*
* This function returns the current IPv4 address of the Ethernet interface
* formatted as a string (e.g., "192.168.1.100"). If no valid IPv4 address
* exists, an empty string is returned.
*/
String EthernetGetIPv4Str(void)
{
IPAddress ip;
return EthernetGetIPv4(&ip) ? ip.toString() : String();
}
#ifdef USE_IPV6
bool IPv6isLocal(const IPAddress & ip) {
return ip.addr_type() == ESP_IP6_ADDR_IS_LINK_LOCAL; // TODO
}
#include "lwip/netif.h"
//
// Scan through all interfaces to find a global or local IPv6 address
// Arg:
// is_local: is the address Link-Local (true) or Global (false)
// if_type: possible values are "st" for Wifi STA, "en" for Ethernet, "lo" for localhost (not useful)
// Returns `true` if found
bool WifiFindIPv6(IPAddress *ip, bool is_local, const char * if_type = "st") {
for (netif* intf = netif_list; intf != nullptr; intf = intf->next) {
if (intf->name[0] == if_type[0] && intf->name[1] == if_type[1]) {
for (uint32_t i = 0; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
ip_addr_t *ipv6 = &intf->ip6_addr[i];
if (IP_IS_V6_VAL(*ipv6) && !ip_addr_isloopback(ipv6) && !ip_addr_isany(ipv6) && ((bool)ip_addr_islinklocal(ipv6) == is_local)) {
if (ip != nullptr) { ip->from_ip_addr_t(ipv6); }
return true;
}
}
}
}
return false;
}
// Returns only IPv6 global address (no loopback and no link-local)
bool WifiGetIPv6(IPAddress *ip)
{
return WifiFindIPv6(ip, false, "st");
}
bool WifiHasIPv6(void)
{
return WifiGetIPv6(nullptr);
}
String WifiGetIPv6Str(void)
{
IPAddress ip;
return WifiGetIPv6(&ip) ? ip.toString(true) : String();
}
bool WifiGetIPv6LinkLocal(IPAddress *ip)
{
return WifiFindIPv6(ip, true, "st");
}
String WifiGetIPv6LinkLocalStr(void)
{
IPAddress ip;
return WifiGetIPv6LinkLocal(&ip) ? ip.toString(true) : String();
}
// Returns only IPv6 global address (no loopback and no link-local)
bool EthernetGetIPv6(IPAddress *ip)
{
return WifiFindIPv6(ip, false, "en");
}
bool EthernetHasIPv6(void)
{
return EthernetGetIPv6(nullptr);
}
String EthernetGetIPv6Str(void)
{
IPAddress ip;
return EthernetGetIPv6(&ip) ? ip.toString(true) : String();
}
bool EthernetGetIPv6LinkLocal(IPAddress *ip)
{
return WifiFindIPv6(ip, true, "en");
}
bool EthernetHasIPv6LinkLocal(void)
{
return EthernetGetIPv6LinkLocal(nullptr);
}
String EthernetGetIPv6LinkLocalStr(void)
{
IPAddress ip;
return EthernetGetIPv6LinkLocal(&ip) ? ip.toString(true) : String();
}
bool DNSGetIP(IPAddress *ip, uint32_t idx)
{
#ifdef ESP32
WiFiHelper::scrubDNS(); // internal calls to reconnect can zero the DNS servers, restore the previous values
#endif
const ip_addr_t *ip_dns = dns_getserver(idx);
if (!ip_addr_isany(ip_dns)) {
if (ip != nullptr) { ip->from_ip_addr_t((ip_addr_t*)ip_dns); }
return true;
}
if (ip != nullptr) { ip->from_ip_addr_t((ip_addr_t*)IP4_ADDR_ANY); }
return false;
}
String DNSGetIPStr(uint32_t idx)
{
IPAddress ip;
return DNSGetIP(&ip, idx) ? ip.toString(true) : String(F("0.0.0.0"));
}
//
#include "lwip/dns.h"
#ifdef ESP32
#include "esp_netif_net_stack.h"
#endif
void WifiDumpAddressesIPv6(void)
{
for (netif* intf = netif_list; intf != nullptr; intf = intf->next) {
#ifdef ESP32
esp_netif_t *esp_netif = esp_netif_get_handle_from_netif_impl(intf);
int32_t route_prio = esp_netif ? esp_netif_get_route_prio(esp_netif) : -1;
if (!ip_addr_isany_val(intf->ip_addr)) AddLog(LOG_LEVEL_DEBUG, "WIF: '%c%c%i' IPv4 %s (%i)", intf->name[0], intf->name[1], intf->num, IPAddress(&intf->ip_addr).toString(true).c_str(), route_prio);
for (uint32_t i = 0; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
if (!ip_addr_isany_val(intf->ip6_addr[i]))
AddLog(LOG_LEVEL_DEBUG, "IP : '%c%c%i' IPv6 %s %s (%i)", intf->name[0], intf->name[1], intf->num,
IPAddress(&intf->ip6_addr[i]).toString(true).c_str(),
ip_addr_islinklocal(&intf->ip6_addr[i]) ? "local" : "", route_prio);
}
#else
if (!ip_addr_isany_val(intf->ip_addr)) AddLog(LOG_LEVEL_DEBUG, "WIF: '%c%c%i' IPv4 %s", intf->name[0], intf->name[1], intf->num, IPAddress(&intf->ip_addr).toString(true).c_str());
for (uint32_t i = 0; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
if (!ip_addr_isany_val(intf->ip6_addr[i]))
AddLog(LOG_LEVEL_DEBUG, "IP : '%c%c%i' IPv6 %s %s", intf->name[0], intf->name[1], intf->num,
IPAddress(&intf->ip6_addr[i]).toString(true).c_str(),
ip_addr_islinklocal(&intf->ip6_addr[i]) ? "local" : "");
}
#endif
}
AddLog(LOG_LEVEL_DEBUG, "IP : DNS: %s %s", IPAddress(dns_getserver(0)).toString().c_str(), IPAddress(dns_getserver(1)).toString(true).c_str());
AddLog(LOG_LEVEL_DEBUG, "WIF: v4IP: %_I v6IP: %s mainIP: %s", (uint32_t) WiFi.localIP(), WifiGetIPv6Str().c_str(), WifiGetIPStr().c_str());
//#if defined(ESP32) && CONFIG_IDF_TARGET_ESP32 && defined(USE_ETHERNET)
#if defined(ESP32) && defined(USE_ETHERNET)
AddLog(LOG_LEVEL_DEBUG, "ETH: v4IP %_I v6IP: %s mainIP: %s", (uint32_t) EthernetLocalIP(), EthernetGetIPv6Str().c_str(), EthernetGetIPStr().c_str());
#endif
AddLog(LOG_LEVEL_DEBUG, "IP : ListeningIP %s", IPGetListeningAddressStr().c_str());
}
#endif // USE_IPV6
// Returns the IP address on which we listen (used for Web UI mainly)
//
// If IPv4 is set, it is preferred.
// If only IPv6, return the routable global address
bool IPGetListeningAddress(IPAddress * ip)
{
if (ip == nullptr) return HasIP(); // no value added for this method if no parameter
#ifdef USE_IPV6
// collect both Wifi and Eth IPs and choose an IPv4 if any (Eth has priority)
IPAddress ip_wifi;
bool has_wifi = WifiGetIP(&ip_wifi);
//#if defined(ESP32) && CONFIG_IDF_TARGET_ESP32 && defined(USE_ETHERNET)
#if defined(ESP32) && defined(USE_ETHERNET)
IPAddress ip_eth;
bool has_eth = EthernetGetIP(&ip_eth);
if (has_wifi && has_eth) {
if (ip_eth.type() == IPv4) { *ip = ip_eth; return true; }
if (ip_wifi.type() == IPv4) { *ip = ip_wifi; return true; }
// both addresses are v6, return ETH
*ip = ip_eth;
return true;
}
// from here only wifi or eth may be valid
if (has_eth) { *ip = ip_eth; return true; }
#endif
if (has_wifi) { *ip = ip_wifi; return true; }
*ip = IPAddress();
return false;
#else // USE_IPV6
//#if defined(ESP32) && CONFIG_IDF_TARGET_ESP32 && defined(USE_ETHERNET)
#if defined(ESP32) && defined(USE_ETHERNET)
if (EthernetGetIP(ip)) { return true; }
#endif
if (WifiGetIP(ip)) { return true; }
*ip = IPAddress();
return false;
#endif // USE_IPV6
}
String IPGetListeningAddressStr(void)
{
IPAddress ip;
#ifdef USE_IPV6
return IPGetListeningAddress(&ip) ? ip.toString(true) : String();
#else
return IPGetListeningAddress(&ip) ? ip.toString() : String();
#endif
}
// Because of IPv6, we can't test an IP address agains (uint32_t)0L anymore
// This test would work only for IPv4 assigned addresses.
// We must now use the following instead
inline bool IPIsValid(const IPAddress & ip)
{
#ifdef USE_IPV6
return !ip_addr_isany_val((const ip_addr_t &)ip);
#else
return static_cast<uint32_t>(ip) != 0;
#endif
}
// Because of IPv6, URL encoding of IP address needs to be adapted
// IPv4: address is "x.x.x.x"
// IPv6: address is enclosed in brackets "[x.x::x.x...]"
String IPForUrl(const IPAddress & ip)
{
#ifdef USE_IPV6
if (ip.type() == IPv4) {
return ip.toString().c_str();
} else {
String s('[');
s += ip.toString(true).c_str();
s += ']';
return s;
}
#else
return ip.toString().c_str();
#endif
}
// Check to see if we have any routable IP address
// IPv4 has always priority
// Copy the value of the IP if pointer provided (optional)
// `exclude_ap` allows to exlude AP IP address and focus only on local STA
bool WifiGetIP(IPAddress *ip, bool exclude_ap) {
#ifdef ESP32
wifi_mode_t mode = WiFi.getMode();
if ((mode == WIFI_MODE_STA || mode == WIFI_MODE_APSTA) && (uint32_t)WiFi.localIP() != 0) {
if (ip != nullptr) { *ip = WiFi.localIP(); }
return true;
}
if (!exclude_ap && (mode == WIFI_MODE_AP || mode == WIFI_MODE_APSTA) && (uint32_t)WiFi.softAPIP() != 0) {
if (ip != nullptr) { *ip = WiFi.softAPIP(); }
return true;
}
#else
WiFiMode_t mode = WiFi.getMode();
if ((mode == WIFI_STA || mode == WIFI_AP_STA) && (uint32_t)WiFi.localIP() != 0) {
if (ip != nullptr) { *ip = WiFi.localIP(); }
return true;
}
if (!exclude_ap && (mode == WIFI_AP || mode == WIFI_AP_STA) && (uint32_t)WiFi.softAPIP() != 0) {
if (ip != nullptr) { *ip = WiFi.softAPIP(); }
return true;
}
#endif
#ifdef USE_IPV6
IPAddress lip;
if (WifiGetIPv6(&lip)) {
if (ip != nullptr) { *ip = lip; }
return true;
}
if (ip != nullptr) { *ip = IPAddress(); }
#endif // USE_IPV6
return false;
}
bool WifiHasIP(void) {
return WifiGetIP(nullptr);
}
String WifiGetIPStr(void)
{
IPAddress ip;
#ifdef USE_IPV6
return WifiGetIP(&ip) ? ip.toString(true) : String();
#else
return WifiGetIP(&ip) ? ip.toString() : String();
#endif
}
// Has a routable IP, whether IPv4 or IPv6, Wifi or Ethernet
bool HasIP(void) {
if (WifiHasIP()) return true;
//#if defined(ESP32) && CONFIG_IDF_TARGET_ESP32 && defined(USE_ETHERNET)
#if defined(ESP32) && defined(USE_ETHERNET)
if (EthernetHasIP()) return true;
#endif
return false;
}
/**
* Verifies WiFi connection status and manages reconnection
*
* This function checks if the device has a valid WiFi connection with an IP address.
* It handles connection state transitions and reconnection attempts:
*
* 1. If connected with a valid IP:
* - Updates connection state
* - Resets retry counters
* - Stores network parameters for quick reconnection
* - Updates DNS server information
*
* 2. If disconnected or connection issues:
* - Updates connection state
* - Manages retry attempts based on failure type
* - Triggers appropriate reconnection strategy
* - Handles fallback to WiFi configuration modes
*
* The function implements an adaptive retry mechanism that adjusts based on
* the type of connection failure (AP not found, wrong password, etc.).
*
* Error handling:
* - Logs specific connection failure reasons
* - Implements exponential backoff for retries
* - Triggers device restart after excessive failures (100 max retries)
*/
void WifiCheckIp(void) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_WIFI D_CHECKING_CONNECTION));
Wifi.counter = WIFI_CHECK_SEC;
if ((WL_CONNECTED == WiFi.status()) && WifiHasIP()) {
WifiSetState(1);
Wifi.counter = WIFI_CHECK_SEC;
Wifi.retry = Wifi.retry_init;
Wifi.max_retry = 0;
if (Wifi.status != WL_CONNECTED) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_WIFI D_CONNECTED));
// AddLog(LOG_LEVEL_INFO, PSTR("Wifi: Set IP addresses"));
// AddLog(LOG_LEVEL_INFO, ">>>1: Before DNS %_I %_I", Settings->ipv4_address[3], Settings->ipv4_address[4]);
Settings->ipv4_address[1] = (uint32_t)WiFi.gatewayIP();
Settings->ipv4_address[2] = (uint32_t)WiFi.subnetMask();
Settings->ipv4_address[3] = (uint32_t)WiFi.dnsIP();
Settings->ipv4_address[4] = (uint32_t)WiFi.dnsIP(1);
// AddLog(LOG_LEVEL_INFO, ">>>1: After DNS %_I %_I", Settings->ipv4_address[3], Settings->ipv4_address[4]);
// Save current AP parameters for quick reconnect
Settings->wifi_channel = WiFi.channel();
uint8_t *bssid = WiFi.BSSID();
memcpy((void*) &Settings->wifi_bssid, (void*) bssid, sizeof(Settings->wifi_bssid));
}
Wifi.status = WL_CONNECTED;
} else {
WifiSetState(0);
uint8_t wifi_config_tool = Settings->sta_config;
Wifi.status = (Wifi.retry &1) ? WiFi.status() : 0; // Skip every second to reset result WiFi.status()
switch (Wifi.status) {
case WL_CONNECTED:
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_WIFI D_CONNECT_FAILED_NO_IP_ADDRESS));
Wifi.status = 0;
Wifi.retry = Wifi.retry_init;
break;
case WL_NO_SSID_AVAIL:
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_WIFI D_CONNECT_FAILED_AP_NOT_REACHED));
Settings->wifi_channel = 0; // Disable stored AP
if (WIFI_WAIT == Settings->sta_config) {
Wifi.retry = Wifi.retry_init;
} else {
if (Wifi.retry > (Wifi.retry_init / 2)) {
Wifi.retry = Wifi.retry_init / 2;
}
else if (Wifi.retry) {
Wifi.retry = 0;
}
}
break;
case WL_CONNECT_FAILED:
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_WIFI D_CONNECT_FAILED_WRONG_PASSWORD));
Settings->wifi_channel = 0; // Disable stored AP
if (Wifi.retry > (Wifi.retry_init / 2)) {
Wifi.retry = Wifi.retry_init / 2;
}
else if (Wifi.retry) {
Wifi.retry = 0;
}
break;
default: // WL_IDLE_STATUS and WL_DISCONNECTED
if (!Wifi.retry || ((Wifi.retry_init / 2) == Wifi.retry)) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_WIFI D_CONNECT_FAILED_AP_TIMEOUT));
Settings->wifi_channel = 0; // Disable stored AP
Wifi.max_retry++;
if (100 == Wifi.max_retry) { // Restart after 100 * (WIFI_RETRY_OFFSET_SEC + MAC) / 2 seconds
TasmotaGlobal.restart_flag = 2;
}
} else {
if (!strlen(SettingsText(SET_STASSID1)) && !strlen(SettingsText(SET_STASSID2))) {
Settings->wifi_channel = 0; // Disable stored AP
wifi_config_tool = WIFI_MANAGER; // Skip empty SSIDs and start Wifi config tool
Wifi.retry = 0;
} else {
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_WIFI D_ATTEMPTING_CONNECTION));
}
}
}
if (Wifi.retry) {
if (Settings->flag3.use_wifi_scan) { // SetOption56 - Scan wifi network at restart for configured AP's
if (Wifi.retry_init == Wifi.retry) {
Wifi.scan_state = 1; // Select scanned SSID
}
} else {
if (Wifi.retry_init == Wifi.retry) {
WifiBegin(3, Settings->wifi_channel); // Select default SSID
}
if ((Settings->sta_config != WIFI_WAIT) && ((Wifi.retry_init / 2) == Wifi.retry)) {
WifiBegin(2, 0); // Select alternate SSID
}
}
Wifi.retry--;
} else {
WifiConfig(wifi_config_tool);
Wifi.retry = Wifi.retry_init;
}
Wifi.counter = 1; // Re-check in 1 second
}
}
/**
* Main WiFi management function called periodically from the main loop
*
* @param param Configuration mode parameter (WIFI_SERIAL, WIFI_MANAGER, etc.)
*
* This function serves as the central WiFi management routine that:
* 1. Decrements the WiFi check counter
* 2. Handles WiFi configuration modes (WIFI_SERIAL, WIFI_MANAGER)
* 3. Manages configuration timeout countdown
* 4. Calls WifiCheckIp() to verify connection status
* 5. Updates WiFi state based on connection status
* 6. Triggers periodic network rescans if enabled
*
* The function implements a state machine that manages:
* - WiFi configuration timeouts
* - Connection monitoring
* - Periodic rescanning of networks
* - WiFi scan state processing
*
* It's designed to be called regularly from the main loop to maintain
* WiFi connectivity and handle configuration changes.
*/
void WifiCheck(uint8_t param)
{
Wifi.counter--;
switch (param) {
case WIFI_SERIAL:
case WIFI_MANAGER:
WifiConfig(param);
break;
default:
if (Wifi.config_counter) {
Wifi.config_counter--;
Wifi.counter = Wifi.config_counter +5;
if (!Wifi.config_counter) {
// SettingsSdkErase(); // Disabled v6.1.0b due to possible bad wifi connects
TasmotaGlobal.restart_flag = 2;
}
} else {
if (Wifi.counter <= 0) {
WifiCheckIp();
}
if ((WL_CONNECTED == WiFi.status()) && WifiHasIP() && !Wifi.config_type) {
WifiSetState(1);
if (Settings->flag3.use_wifi_rescan) { // SetOption57 - Scan wifi network every 44 minutes for configured AP's
if (!(TasmotaGlobal.uptime % (60 * WIFI_RESCAN_MINUTES))) {
if (!Wifi.scan_state) { Wifi.scan_state = 2; } // If wifi scan routine is free, use it. Otherwise, wait for next RESCAN TIME
}
}
} else {
WifiSetState(0);
Mdns.begun = 0;
}
}
if (Wifi.scan_state) { WifiBeginAfterScan(); }
}
}
/**
* Returns the current WiFi state or configuration mode
*
* @return Current WiFi state:
* - WIFI_RESTART: WiFi is being restarted
* - WIFI_SERIAL: Serial configuration mode active
* - WIFI_MANAGER: WiFi manager configuration mode active
* - WIFI_MANAGER_RESET_ONLY: WiFi manager reset-only mode active
* - -1: WiFi is down (not connected)
*
* This function provides the current WiFi state for status reporting and
* decision making. It returns the active configuration mode if one is running,
* WIFI_RESTART if WiFi is up and running normally, or -1 if WiFi is down.
*/
int WifiState(void)
{
int state = -1;
if (!TasmotaGlobal.global_state.wifi_down) { state = WIFI_RESTART; }
if (Wifi.config_type) { state = Wifi.config_type; }
return state;
}
/**
* Gets the current WiFi transmit power
*
* @return Current WiFi transmit power in dBm as a float
*
* This function returns the current WiFi transmit power setting.
* If a fixed power is set in Settings->wifi_output_power, that value is used.
* The power is stored internally as an integer (tenths of dBm) and
* returned as a float value in dBm.
*/
float WifiGetOutputPower(void) {
if (Settings->wifi_output_power) {
Wifi.last_tx_pwr = Settings->wifi_output_power;
}
return (float)(Wifi.last_tx_pwr) / 10;
}
/**
* Sets the WiFi transmit power based on settings
*
* This function configures the WiFi transmit power:
* - If Settings->wifi_output_power is non-zero, it sets a fixed power level
* - If Settings->wifi_output_power is zero, it enables dynamic power management
*
* For fixed power, the value is converted from tenths of dBm to dBm
* (e.g., 170 becomes 17.0 dBm).
*
* The function adds a delay after setting the power to allow the hardware
* to stabilize.
*/
void WifiSetOutputPower(void) {
if (Settings->wifi_output_power) {
WiFiHelper::setOutputPower((float)(Settings->wifi_output_power) / 10);
delay(100);
} else {
AddLog(LOG_LEVEL_DEBUG, PSTR("WIF: Dynamic Tx power enabled")); // WifiPower 0
}
}
/**
* Dynamically adjusts WiFi transmit power based on signal strength
*
* This function implements dynamic power management to optimize power consumption
* while maintaining reliable WiFi connectivity. It works by:
*
* 1. Measuring the current RSSI (signal strength)
* 2. Calculating the minimum required transmit power based on:
* - Current RSSI
* - WiFi sensitivity threshold for the current PHY mode
* - Maximum allowed transmit power for the current PHY mode
*
* The function adjusts power based on different WiFi standards:
* - 802.11b: Different sensitivity and max power than other modes
* - 802.11g: Optimized for 54Mbps operation
* - 802.11n/ax: Higher sensitivity requirements
*
* This helps reduce overall power consumption while maintaining connection quality.
* The function is only active when Settings->wifi_output_power is 0 (dynamic mode).
*
* Original concept by ESPEasy (@TD-er).
*/
void WiFiSetTXpowerBasedOnRssi(void) {
// Dynamic WiFi transmit power based on RSSI lowering overall DC power usage.
// Original idea by ESPEasy (@TD-er)
if (!Settings->flag4.network_wifi || Settings->wifi_output_power) { return; }
const WiFiMode_t cur_mode = WiFi.getMode();
if (cur_mode == WIFI_OFF) { return; }
// Range ESP32 : 2dBm - 20dBm
// Range ESP8266: 0dBm - 20.5dBm
int max_tx_pwr = MAX_TX_PWR_DBM_11b;
int threshold = WIFI_SENSITIVITY_n;
int phy_mode = WiFiHelper::getPhyMode();
switch (phy_mode) {
case 1: // 11b (WIFI_PHY_MODE_11B)
threshold = WIFI_SENSITIVITY_11b;
if (max_tx_pwr > MAX_TX_PWR_DBM_11b) max_tx_pwr = MAX_TX_PWR_DBM_11b;
break;
case 2: // 11bg (WIFI_PHY_MODE_11G)
threshold = WIFI_SENSITIVITY_54g;
if (max_tx_pwr > MAX_TX_PWR_DBM_54g) max_tx_pwr = MAX_TX_PWR_DBM_54g;
break;
case 3: // 11bgn (WIFI_PHY_MODE_HT20 = WIFI_PHY_MODE_11N)
case 4: // 11bgn (WIFI_PHY_MODE_HT40)
case 5: // 11ax (WIFI_PHY_MODE_HE20)
threshold = WIFI_SENSITIVITY_n;
if (max_tx_pwr > MAX_TX_PWR_DBM_n) max_tx_pwr = MAX_TX_PWR_DBM_n;
break;
}
threshold += 30; // Margin in dBm * 10 on top of threshold
// Assume AP sends with max set by ETSI standard.
// 2.4 GHz: 100 mWatt (20 dBm)
// US and some other countries allow 1000 mW (30 dBm)
int rssi = WiFi.RSSI() * 10;
int newrssi = rssi - 200; // We cannot send with over 20 dBm, thus it makes no sense to force higher TX power all the time.
int min_tx_pwr = 0;
if (newrssi < threshold) {
min_tx_pwr = threshold - newrssi;
}
if (min_tx_pwr > max_tx_pwr) {
min_tx_pwr = max_tx_pwr;
}
WiFiHelper::setOutputPower((float)min_tx_pwr / 10);
delay(Wifi.last_tx_pwr < min_tx_pwr); // If increase the TX power, give power supply of the unit some rest
/*
if (Wifi.last_tx_pwr != min_tx_pwr) {
AddLog(LOG_LEVEL_DEBUG, PSTR("WIF: TX power %d, Sensitivity %d, RSSI %d"), min_tx_pwr / 10, threshold / 10, rssi / 10);
}
*/
Wifi.last_tx_pwr = min_tx_pwr;
}
/*
See Esp.h, core_esp8266_phy.cpp and test_overrides.ino
RF_DEFAULT = 0, // RF_CAL or not after deep-sleep wake up, depends on init data byte 108.
RF_CAL = 1, // RF_CAL after deep-sleep wake up, there will be large current.
RF_NO_CAL = 2, // no RF_CAL after deep-sleep wake up, there will only be small current.
RF_DISABLED = 4 // disable RF after deep-sleep wake up, just like modem sleep, there will be the smallest current.
*/
#ifdef WIFI_RF_MODE_RF_CAL
#ifndef USE_DEEPSLEEP
RF_MODE(RF_CAL);
#endif // USE_DEEPSLEEP
#endif // WIFI_RF_MODE_RF_CAL
#ifdef WIFI_RF_PRE_INIT
bool rf_pre_init_flag = false;
RF_PRE_INIT()
{
#ifndef USE_DEEPSLEEP
system_deep_sleep_set_option(1); // The option is 1 by default.
system_phy_set_rfoption(RF_CAL);
#endif // USE_DEEPSLEEP
system_phy_set_powerup_option(3); // 3: RF initialization will do the whole RF calibration which will take about 200ms; this increases the current consumption.
rf_pre_init_flag = true;
}
#endif // WIFI_RF_PRE_INIT
/**
* Enables WiFi by setting the check counter to trigger immediate processing
*
* This function activates WiFi by setting the Wifi.counter to 1, which will
* cause the WifiCheck function to process WiFi operations on the next cycle.
* It's a simple way to trigger WiFi initialization or reconnection from
* other parts of the code.
*/
void WifiEnable(void) {
Wifi.counter = 1;
}
//#ifdef ESP8266
//#include <sntp.h> // sntp_servermode_dhcp()
//#endif // ESP8266
#ifdef ESP32
void WifiEvents(arduino_event_t *event);
#endif
/**
* Initializes WiFi connection parameters and starts the connection process
*
* This function sets up the WiFi system for initial connection:
* 1. Registers event handlers for ESP32
* 2. Initializes WiFi state variables
* 3. Sets up retry timers with a randomized offset based on chip ID
* 4. Configures WiFi for non-persistent settings
*
* The function is typically called during device startup or after a
* WiFi reconfiguration. It prepares the WiFi subsystem but doesn't
* actually establish the connection (that happens in subsequent
* WifiCheck calls).
*
* The retry timing includes a chip-specific offset to prevent multiple
* devices from attempting to reconnect simultaneously, which helps
* avoid network congestion in multi-device installations.
*
* Note: This function will not do anything if network_wifi flag is disabled.
*/
void WifiConnect(void)
{
if (!Settings->flag4.network_wifi) { return; }
#ifdef ESP32
static bool wifi_event_registered = false;
if (!wifi_event_registered) {
WiFi.onEvent(WifiEvents); // register event listener only once
wifi_event_registered = true;
#ifdef CONFIG_ESP_WIFI_REMOTE_ENABLED
// Hosted MCU SDIO pins must be set before WiFi is initialized
if (WiFi.setPins(Pin(GPIO_HSDIO_CLK),
Pin(GPIO_HSDIO_CMD),
Pin(GPIO_HSDIO_D0),
Pin(GPIO_HSDIO_D1),
Pin(GPIO_HSDIO_D2),
Pin(GPIO_HSDIO_D3),
Pin(GPIO_HSDIO_RST))) {
// AddLog(LOG_LEVEL_DEBUG, PSTR("HMC: Hosted MCU SDIO pins set"));
}
#endif // CONFIG_ESP_WIFI_REMOTE_ENABLED
}
#endif // ESP32
WifiSetState(0);
// WifiSetOutputPower();
//#ifdef ESP8266
// https://github.com/arendst/Tasmota/issues/16061#issuecomment-1216970170
// sntp_servermode_dhcp(0);
//#endif // ESP8266
WiFi.persistent(false); // Solve possible wifi init errors
Wifi.status = 0;
Wifi.retry_init = WIFI_RETRY_OFFSET_SEC + (ESP_getChipId() & 0xF); // Add extra delay to stop overrun by simultanous re-connects
Wifi.retry = Wifi.retry_init;
Wifi.max_retry = 0;
Wifi.counter = 1;
memcpy((void*) &Wifi.bssid, (void*) Settings->wifi_bssid, sizeof(Wifi.bssid));
#ifdef WIFI_RF_PRE_INIT
if (rf_pre_init_flag) {
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_WIFI "Pre-init done"));
}
#endif // WIFI_RF_PRE_INIT
}
/**
* Performs a clean shutdown of WiFi connections and services
*
* @param option If true, performs a more thorough cleanup including SDK WiFi calibration data
*
* This function properly terminates WiFi connections and related services:
* 1. Disconnects any active UDP emulation services
* 2. Disconnects MQTT if enabled
* 3. Disconnects from WiFi with appropriate cleanup based on the option parameter
*
* When option=true (used with WIFI_FORCE_RF_CAL_ERASE enabled):
* - Performs a simple disconnect
* - Erases SDK WiFi configuration and calibration data
*
* When option=false (default, used for normal shutdown and DeepSleep):
* - Performs a more standard disconnect that preserves calibration data
*
* The function includes delays to ensure network buffers are properly flushed
* before disconnection.
*/
void WifiShutdown(bool option) {
// option = false - Legacy disconnect also used by DeepSleep
// option = true - Disconnect with SDK wifi calibrate sector erase when WIFI_FORCE_RF_CAL_ERASE enabled
delay(100); // Allow time for message xfer - disabled v6.1.0b
#ifdef USE_EMULATION
UdpDisconnect();
delay(100); // Flush anything in the network buffers.
#endif // USE_EMULATION
if (Settings->flag.mqtt_enabled) { // SetOption3 - Enable MQTT
MqttDisconnect();
delay(100); // Flush anything in the network buffers.
}
#ifdef WIFI_FORCE_RF_CAL_ERASE
if (option) {
WiFi.disconnect(false); // Disconnect wifi
SettingsErase(4); // Delete SDK wifi config and calibrate data
} else
#endif // WIFI_FORCE_RF_CAL_ERASE
{
// Enable from 6.0.0a until 6.1.0a - disabled due to possible cause of bad wifi connect on core 2.3.0
// Re-enabled from 6.3.0.7 with ESP.restart replaced by ESP.reset
// Courtesy of EspEasy
// WiFi.persistent(true); // use SDK storage of SSID/WPA parameters
ETS_UART_INTR_DISABLE();
#ifdef ESP8266
wifi_station_disconnect(); // this will store empty ssid/wpa into sdk storage
#else
WiFi.disconnect(true, true);
#endif
ETS_UART_INTR_ENABLE();
// WiFi.persistent(false); // Do not use SDK storage of SSID/WPA parameters
}
delay(100); // Flush anything in the network buffers.
}
/**
* Completely disables WiFi functionality
*
* This function performs a full shutdown of WiFi:
* 1. Checks if WiFi is already disabled to avoid redundant operations
* 2. Calls WifiShutdown() to properly terminate connections
* 3. Sets WiFi mode to WIFI_OFF to disable the radio
* 4. Updates the global state to indicate WiFi is down
*
* After calling this function, WiFi will remain disabled until explicitly
* re-enabled. This is useful for power saving or when WiFi is not needed.
*/
void WifiDisable(void) {
if (!TasmotaGlobal.global_state.wifi_down) {
WifiShutdown();
WifiSetMode(WIFI_OFF);
}
TasmotaGlobal.global_state.wifi_down = 1;
}
/**
* Performs a clean device restart with proper shutdown procedures
*
* This function handles different types of restart operations:
* 1. Normal restart: Performs cleanup and calls ESP.restart()
* 2. Halt (TasmotaGlobal.restart_halt): Enters an infinite loop with watchdog feeding
* 3. Deep sleep (TasmotaGlobal.restart_deepsleep): Enters deep sleep mode
*
* Before restarting, the function:
* 1. Resets PWM outputs
* 2. Performs a clean WiFi shutdown
* 3. Clears any crash dump data
* 4. For ESP32-C3: Forces GPIO hold for relays to maintain state during reset
*
* The halt mode is useful for debugging, as it keeps the device running
* but in a known state with visual LED feedback.
*
* Deep sleep mode puts the device into the lowest power state, with only
* hardware-triggered wake up possible.
*/
void EspRestart(void) {
ResetPwm();
WifiShutdown(true);
#ifndef FIRMWARE_MINIMAL
CrashDumpClear(); // Clear the stack dump in RTC
#endif // FIRMWARE_MINIMAL
#ifdef CONFIG_IDF_TARGET_ESP32C3
GpioForceHoldRelay(); // Retain the state when the chip or system is reset, for example, when watchdog time-out or Deep-sleep
#endif // CONFIG_IDF_TARGET_ESP32C3
if (TasmotaGlobal.restart_halt) { // Restart 2
while (1) {
OsWatchLoop(); // Feed OsWatch timer to prevent restart
SetLedLink(1); // Wifi led on
delay(200); // Satisfy SDK
SetLedLink(0); // Wifi led off
delay(800); // Satisfy SDK
}
}
else if (TasmotaGlobal.restart_deepsleep) { // Restart 9
#ifdef USE_DEEPSLEEP
DeepSleepStart();
// should never come to this line....
#endif
ESP.deepSleep(0); // Deep sleep mode with only hardware triggered wake up
}
else {
ESP_Restart();
}
}
#ifdef ESP8266
//
// Gratuitous ARP, backported from https://github.com/esp8266/Arduino/pull/6889
//
extern "C" {
#if LWIP_VERSION_MAJOR == 1
#include "netif/wlan_lwip_if.h" // eagle_lwip_getif()
#include "netif/etharp.h" // gratuitous arp
#else
#include "lwip/etharp.h" // gratuitous arp
#endif
}
/**
* Sends a Gratuitous ARP packet to update network ARP tables
*
* This function sends a Gratuitous ARP announcement to inform other devices
* on the network about the device's MAC and IP address mapping. This helps
* maintain connectivity by refreshing ARP cache entries on network devices,
* particularly useful with routers that might otherwise expire ARP entries.
*
* The function:
* 1. Finds the active station interface
* 2. Verifies it has a valid IP address
* 3. Sends a gratuitous ARP packet
*
* This implementation handles differences between LWIP v1 and v2.
* Backported from https://github.com/esp8266/Arduino/pull/6889
*/
void stationKeepAliveNow(void) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_WIFI "Sending Gratuitous ARP"));
for (netif* interface = netif_list; interface != nullptr; interface = interface->next)
if (
(interface->flags & NETIF_FLAG_LINK_UP)
&& (interface->flags & NETIF_FLAG_UP)
#if LWIP_VERSION_MAJOR == 1
&& interface == eagle_lwip_getif(STATION_IF) /* lwip1 does not set if->num properly */
&& (!ip_addr_isany(&interface->ip_addr))
#else
&& interface->num == STATION_IF
&& (!ip4_addr_isany_val(*netif_ip4_addr(interface)))
#endif
)
{
etharp_gratuitous(interface);
break;
}
}
/**
* Periodically sends Gratuitous ARP packets to maintain network presence
*
* This function manages the timing for sending Gratuitous ARP packets
* based on the configured interval in Settings->param[P_ARP_GRATUITOUS].
*
* The timing can be configured as:
* - Values 1-100: Seconds between ARP packets
* - Values >100: Minutes between ARP packets (value - 100)
* e.g., 105 = 5 minutes, 110 = 10 minutes
* - Value 0: Feature disabled
*
* This helps maintain connectivity with network devices that might
* otherwise expire ARP cache entries, particularly useful with some
* router models that aggressively clear their ARP tables.
*/
void wifiKeepAlive(void) {
static uint32_t wifi_timer = millis(); // Wifi keepalive timer
uint32_t wifiTimerSec = Settings->param[P_ARP_GRATUITOUS]; // 8-bits number of seconds, or minutes if > 100
if ((WL_CONNECTED != Wifi.status) || (0 == wifiTimerSec)) { return; } // quick exit if wifi not connected or feature disabled
if (TimeReached(wifi_timer)) {
stationKeepAliveNow();
if (wifiTimerSec > 100) {
wifiTimerSec = (wifiTimerSec - 100) * 60; // convert >100 as minutes, ex: 105 = 5 minutes, 110 = 10 minutes
}
SetNextTimeInterval(wifi_timer, wifiTimerSec * 1000);
}
}
#endif // ESP8266
/**
* Returns the configured DNS resolution timeout
*
* @return DNS timeout value in milliseconds from settings
*
* This function exposes the DNS timeout setting to be used by WiFi32
* and other components that need to know how long to wait for DNS
* resolution before timing out.
*/
int32_t WifiDNSGetTimeout(void) {
return Settings->dns_timeout;
}
/**
* Determines if IPv6 should be prioritized for DNS resolution
*
* @return true if IPv6 should be prioritized, false otherwise
*
* This function determines whether IPv6 addresses should be prioritized
* over IPv4 for DNS resolution based on:
*
* 1. User settings (Settings->flag6.dns_ipv6_priority)
* 2. Availability of IPv4 and IPv6 addresses
*
* The logic ensures that:
* - If only IPv4 is available, IPv4 is prioritized regardless of settings
* - If only IPv6 is available, IPv6 is prioritized regardless of settings
* - If both are available, the user setting determines priority
*
* When the priority changes, the DNS cache is cleared on ESP32 to ensure
* proper resolution with the new priority.
*/
bool WifiDNSGetIPv6Priority(void) {
#ifdef USE_IPV6
// we prioritize IPv6 only if a global IPv6 address is available, otherwise revert to IPv4 if we have one as well
// Any change in logic needs to clear the DNS cache
static bool had_v6prio = false;
bool has_v4 = WifiHasIPv4() || EthernetHasIPv4();
bool has_v6 = WifiHasIPv6() || EthernetHasIPv6();
bool v6prio = Settings->flag6.dns_ipv6_priority;
if (has_v4 && !has_v6) {
v6prio = false; // revert to IPv4 first
} else if (has_v6 && !has_v4) {
v6prio = true; // only IPv6 is available
}
// any change of state requires a dns cache clear
if (had_v6prio != v6prio) {
#ifdef ESP32
dns_clear_cache(); // this function doesn't exist in LWIP used by ESP8266
#endif
had_v6prio = v6prio;
}
return v6prio;
#endif // USE_IPV6
return false;
}
/**
* Resolves a hostname to an IP address with enhanced handling
*
* @param aHostname The hostname to resolve
* @param aResult Reference to store the resulting IP address
* @return true if resolution was successful, false otherwise
*
* This function extends the standard hostname resolution with:
* 1. Direct IP address parsing (for ESP_IDF_VERSION_MAJOR >= 5 with IPv6)
* 2. IPv6 zone auto-fixing for link-local addresses
* 3. Timeout handling based on Settings->dns_timeout
* 4. Detailed logging of resolution results and timing
*
* The function is used throughout Tasmota for all DNS resolution needs,
* providing consistent behavior and error handling.
*/
bool WifiHostByName(const char* aHostname, IPAddress& aResult) {
#ifdef USE_IPV6
#if ESP_IDF_VERSION_MAJOR >= 5
// try converting directly to IP
if (aResult.fromString(aHostname)) {
WiFiHelper::IPv6ZoneAutoFix(aResult, aHostname);
return true; // we're done
}
#endif
#endif // USE_IPV6
uint32_t dns_start = millis();
bool success = WiFiHelper::hostByName(aHostname, aResult, Settings->dns_timeout);
uint32_t dns_end = millis();
if (success) {
// Host name resolved
if (0xFFFFFFFF != (uint32_t)aResult) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_WIFI "DNS resolved '%s' (%s) in %i ms"), aHostname, aResult.toString().c_str(), dns_end - dns_start);
return true;
}
}
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_WIFI "DNS failed for %s after %i ms"), aHostname, dns_end - dns_start);
return false;
}
/**
* Checks if a hostname can be resolved via DNS
*
* @param aHostname The hostname to check
* @return true if the hostname can be resolved, false otherwise
*
* This is a convenience wrapper around WifiHostByName that simply checks
* if a hostname can be resolved without needing the resulting IP address.
*/
bool WifiDnsPresent(const char* aHostname) {
IPAddress aResult;
return WifiHostByName(aHostname, aResult);
}
/**
* Periodically polls NTP servers to synchronize device time
*
* This function manages the NTP time synchronization process:
* 1. Determines when to attempt synchronization based on:
* - Initial sync attempt shortly after boot
* - Hourly sync attempts thereafter
* - Forced sync requests via TasmotaGlobal.ntp_force_sync
*
* 2. Calls WifiGetNtp() to retrieve the current time from NTP servers
*
* 3. Updates the RTC time if a valid time is received
*
* The function implements a staggered sync schedule based on the device's
* chip ID to prevent all devices from querying NTP servers simultaneously.
*
* Time synchronization is skipped if:
* - The network is down
* - The user has manually set the time
*/
void WifiPollNtp() {
static uint8_t ntp_sync_minute = 0;
static uint32_t ntp_run_time = 0;
if (TasmotaGlobal.global_state.network_down || Rtc.user_time_entry) { return; }
uint8_t uptime_minute = (TasmotaGlobal.uptime / 60) % 60; // 0 .. 59
if ((ntp_sync_minute > 59) && (uptime_minute > 2)) {
ntp_sync_minute = 1; // If sync prepare for a new cycle
}
// First try ASAP to sync. If fails try once every 60 seconds based on chip id
uint8_t offset = (TasmotaGlobal.uptime < 30) ? RtcTime.second + ntp_run_time : (((ESP_getChipId() & 0xF) * 3) + 3) ;
if ( (((offset == RtcTime.second) && ( (RtcTime.year < 2016) || // Never synced
(ntp_sync_minute == uptime_minute))) || // Re-sync every hour
TasmotaGlobal.ntp_force_sync ) ) { // Forced sync
TasmotaGlobal.ntp_force_sync = false;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NTP: Sync time..."));
ntp_run_time = millis();
uint64_t ntp_nanos = WifiGetNtp();
uint32_t ntp_time = ntp_nanos / 1000000000;
ntp_run_time = (millis() - ntp_run_time) / 1000;
// AddLog(LOG_LEVEL_DEBUG, PSTR("NTP: Runtime %d"), ntp_run_time);
if (ntp_run_time < 5) { ntp_run_time = 0; } // DNS timeout is around 10s
if (ntp_time > START_VALID_TIME) {
Rtc.utc_time = ntp_time;
Rtc.nanos = ntp_nanos % 1000000000;
ntp_sync_minute = 60; // Sync so block further requests
RtcSync("NTP");
} else {
ntp_sync_minute++; // Try again in next minute
}
}
}
/**
* Retrieves the current time from an NTP server
*
* @return Current time in nanoseconds since Unix epoch, or 0 on failure
*
* This function implements the NTP client protocol:
* 1. Selects an NTP server from configured options or fallbacks
* 2. Resolves the server hostname to an IP address
* 3. Creates a UDP socket with a random local port
* 4. Sends an NTP request packet
* 5. Waits for and processes the response
*
* The function handles various error conditions:
* - DNS resolution failures
* - Socket creation failures
* - Packet send/receive errors
* - Invalid or unsynchronized server responses
*
* If a server fails, the function increments ntp_server_id to try
* the next configured server on the next attempt.
*/
uint64_t WifiGetNtp(void) {
static uint8_t ntp_server_id = 0;
// AddLog(LOG_LEVEL_DEBUG, PSTR("NTP: Start NTP Sync %d ..."), ntp_server_id);
IPAddress time_server_ip;
char fallback_ntp_server[2][32];
ext_snprintf_P(fallback_ntp_server[0], sizeof(fallback_ntp_server[0]), PSTR("%_I"), Settings->ipv4_address[1]); // #17984
ext_snprintf_P(fallback_ntp_server[1], sizeof(fallback_ntp_server[1]), PSTR("%d.pool.ntp.org"), random(0,3));
char* ntp_server;
for (uint32_t i = 0; i < MAX_NTP_SERVERS +2; i++) {
if (ntp_server_id >= MAX_NTP_SERVERS +2) { ntp_server_id = 0; }
ntp_server = (ntp_server_id < MAX_NTP_SERVERS) ? SettingsText(SET_NTPSERVER1 + ntp_server_id) : fallback_ntp_server[ntp_server_id - MAX_NTP_SERVERS];
if (strlen(ntp_server)) {
break;
}
ntp_server_id++;
}
if (!WifiHostByName(ntp_server, time_server_ip)) {
ntp_server_id++;
// AddLog(LOG_LEVEL_DEBUG, PSTR("NTP: Unable to resolve '%s'"), ntp_server);
return 0;
}
// AddLog(LOG_LEVEL_DEBUG, PSTR("NTP: NtpServer '%s' IP %_I"), ntp_server, (uint32_t)time_server_ip);
WiFiUDP udp;
uint32_t attempts = 3;
while (attempts > 0) {
uint32_t port = random(1025, 65535); // Create a random port for the UDP connection.
#ifdef USE_IPV6
if (udp.begin(IPAddress(IPv6), port) != 0) {
#else
if (udp.begin(port) != 0) {
#endif
break;
}
attempts--;
}
if (0 == attempts) { return 0; }
while (udp.parsePacket() > 0) { // Discard any previously received packets
yield();
}
const uint32_t NTP_PACKET_SIZE = 48; // NTP time is in the first 48 bytes of message
uint8_t packet_buffer[NTP_PACKET_SIZE]; // Buffer to hold incoming & outgoing packets
memset(packet_buffer, 0, NTP_PACKET_SIZE);
packet_buffer[0] = 0b11100011; // LI, Version, Mode
packet_buffer[1] = 0; // Stratum, or type of clock
packet_buffer[2] = 6; // Polling Interval
packet_buffer[3] = 0xEC; // Peer Clock Precision
packet_buffer[12] = 49;
packet_buffer[13] = 0x4E;
packet_buffer[14] = 49;
packet_buffer[15] = 52;
if (udp.beginPacket(time_server_ip, 123) == 0) { // NTP requests are to port 123
ntp_server_id++; // Next server next time
udp.stop();
return 0;
}
udp.write(packet_buffer, NTP_PACKET_SIZE);
udp.endPacket();
uint32_t begin_wait = millis();
while (!TimeReached(begin_wait + 1000)) { // Wait up to one second
uint32_t size = udp.parsePacket();
uint32_t remote_port = udp.remotePort();
if ((size >= NTP_PACKET_SIZE) && (remote_port == 123)) {
udp.read(packet_buffer, NTP_PACKET_SIZE); // Read packet into the buffer
udp.stop();
if ((packet_buffer[0] & 0b11000000) == 0b11000000) {
// Leap-Indicator: unknown (clock unsynchronized)
// See: https://github.com/letscontrolit/ESPEasy/issues/2886#issuecomment-586656384
AddLog(LOG_LEVEL_DEBUG, PSTR("NTP: IP %_I unsynced"), (uint32_t)time_server_ip);
ntp_server_id++; // Next server next time
return 0;
}
// convert four bytes starting at location 40 to a long integer
// TX time is used here.
uint32_t secs_since_1900 = (uint32_t)packet_buffer[40] << 24;
secs_since_1900 |= (uint32_t)packet_buffer[41] << 16;
secs_since_1900 |= (uint32_t)packet_buffer[42] << 8;
secs_since_1900 |= (uint32_t)packet_buffer[43];
if (0 == secs_since_1900) { // No time stamp received
ntp_server_id++; // Next server next time
return 0;
}
uint32_t tmp_fraction = (uint32_t)packet_buffer[44] << 24;
tmp_fraction |= (uint32_t)packet_buffer[45] << 16;
tmp_fraction |= (uint32_t)packet_buffer[46] << 8;
tmp_fraction |= (uint32_t)packet_buffer[47];
uint32_t fraction = (((uint64_t)tmp_fraction) * 1000000000) >> 32;
return (((uint64_t)secs_since_1900) - 2208988800UL) * 1000000000 + fraction;
}
delay(10);
}
// Timeout.
AddLog(LOG_LEVEL_DEBUG, PSTR("NTP: No reply from %_I"), (uint32_t)time_server_ip);
udp.stop();
ntp_server_id++; // Next server next time
return 0;
}
// --------------------------------------------------------------------------------
// Respond to some Arduino/esp-idf events for better IPv6 support
// --------------------------------------------------------------------------------
#ifdef ESP32
extern esp_netif_t* get_esp_interface_netif(esp_interface_t interface);
// typedef void (*WiFiEventSysCb)(arduino_event_t *event);
/**
* Event handler for ESP32 WiFi and network events
*
* @param event Pointer to the arduino_event_t structure containing event details
*
* This function processes WiFi and network events on ESP32 platforms:
*
* 1. IPv6 address assignment:
* - Logs when global or local IPv6 addresses are assigned
* - Distinguishes between WiFi and Ethernet interfaces
*
* 2. WiFi connection events:
* - Creates IPv6 link-local addresses when WiFi connects
* - Works around race conditions in the ESP-IDF LWIP implementation
*
* 3. IPv4 address assignment:
* - Logs when IPv4 addresses are assigned
* - Includes subnet mask and gateway information
*
* The function also ensures DNS servers are properly maintained by calling
* WiFiHelper::scrubDNS() to restore DNS settings that might be zeroed by
* internal reconnection processes.
*/
void WifiEvents(arduino_event_t *event) {
switch (event->event_id) {
#ifdef USE_IPV6
case ARDUINO_EVENT_WIFI_STA_GOT_IP6:
{
// Serial.printf(">>> event ARDUINO_EVENT_WIFI_STA_GOT_IP6 \n");
IPAddress addr(IPv6, (const uint8_t*)event->event_info.got_ip6.ip6_info.ip.addr, event->event_info.got_ip6.ip6_info.ip.zone);
AddLog(LOG_LEVEL_DEBUG, PSTR("%s: IPv6 %s %s"),
event->event_id == ARDUINO_EVENT_ETH_GOT_IP6 ? "ETH" : "WIF",
IPv6isLocal(addr) ? PSTR("Local") : PSTR("Global"), addr.toString(true).c_str());
}
break;
case ARDUINO_EVENT_WIFI_STA_CONNECTED:
// workaround for the race condition in LWIP, see https://github.com/espressif/arduino-esp32/pull/9016#discussion_r1451774885
{
uint32_t i = 5; // try 5 times only
while (esp_netif_create_ip6_linklocal(get_esp_interface_netif(ESP_IF_WIFI_STA)) != ESP_OK) {
delay(1);
if (i-- == 0) {
break;
}
}
}
break;
#endif // USE_IPV6
case ARDUINO_EVENT_WIFI_STA_GOT_IP:
{
// Serial.printf(">>> event ARDUINO_EVENT_WIFI_STA_GOT_IP \n");
ip_addr_t ip_addr4;
ip_addr_copy_from_ip4(ip_addr4, event->event_info.got_ip.ip_info.ip);
AddLog(LOG_LEVEL_DEBUG, PSTR("WIF: IPv4 %_I, mask %_I, gateway %_I"),
event->event_info.got_ip.ip_info.ip.addr,
event->event_info.got_ip.ip_info.netmask.addr,
event->event_info.got_ip.ip_info.gw.addr);
}
break;
default:
break;
}
WiFiHelper::scrubDNS(); // internal calls to reconnect can zero the DNS servers, restore the previous values
}
#endif // ESP32