Tasmota/lib/lib_basic/IRremoteESP8266/src/ir_Electra.cpp
2021-03-25 08:40:27 +01:00

402 lines
14 KiB
C++

// Copyright 2018, 2019 David Conran
/// @file
/// @brief Support for Electra A/C protocols.
/// @see https://github.com/ToniA/arduino-heatpumpir/blob/master/AUXHeatpumpIR.cpp
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/527
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/642
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/778
#include "ir_Electra.h"
#include <algorithm>
#include <cstring>
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
// Constants
const uint16_t kElectraAcHdrMark = 9166;
const uint16_t kElectraAcBitMark = 646;
const uint16_t kElectraAcHdrSpace = 4470;
const uint16_t kElectraAcOneSpace = 1647;
const uint16_t kElectraAcZeroSpace = 547;
const uint32_t kElectraAcMessageGap = kDefaultMessageGap; // Just a guess.
using irutils::addBoolToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addFanToString;
using irutils::addTempToString;
#if SEND_ELECTRA_AC
/// Send a Electra A/C formatted message.
/// Status: Alpha / Needs testing against a real device.
/// @param[in] data The message to be sent.
/// @note Guessing MSBF order.
/// @param[in] nbytes The number of bytes of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
void IRsend::sendElectraAC(const uint8_t data[], const uint16_t nbytes,
const uint16_t repeat) {
for (uint16_t r = 0; r <= repeat; r++)
sendGeneric(kElectraAcHdrMark, kElectraAcHdrSpace, kElectraAcBitMark,
kElectraAcOneSpace, kElectraAcBitMark, kElectraAcZeroSpace,
kElectraAcBitMark, kElectraAcMessageGap, data, nbytes,
38000, // Complete guess of the modulation frequency.
false, // Send data in LSB order per byte
0, 50);
}
#endif
/// Class constructor.
/// @param[in] pin GPIO to be used when sending.
/// @param[in] inverted Is the output signal to be inverted?
/// @param[in] use_modulation Is frequency modulation to be used?
IRElectraAc::IRElectraAc(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) {
stateReset();
}
/// Reset the internal state to a fixed known good state.
void IRElectraAc::stateReset(void) {
for (uint8_t i = 1; i < kElectraAcStateLength - 2; i++) _.raw[i] = 0;
_.raw[0] = 0xC3;
_.LightToggle = kElectraAcLightToggleOff;
// [12] is the checksum.
}
/// Set up hardware to be able to send a message.
void IRElectraAc::begin(void) { _irsend.begin(); }
/// Calculate the checksum for a given state.
/// @param[in] state The value to calc the checksum of.
/// @param[in] length The length of the state array.
/// @return The calculated checksum stored in a uint_8.
uint8_t IRElectraAc::calcChecksum(const uint8_t state[],
const uint16_t length) {
if (length == 0) return state[0];
return sumBytes(state, length - 1);
}
/// Verify the checksum is valid for a given state.
/// @param[in] state The state to verify the checksum of.
/// @param[in] length The length of the state array.
/// @return true, if the state has a valid checksum. Otherwise, false.
bool IRElectraAc::validChecksum(const uint8_t state[], const uint16_t length) {
if (length < 2)
return true; // No checksum to compare with. Assume okay.
return (state[length - 1] == calcChecksum(state, length));
}
/// Calculate and set the checksum values for the internal state.
/// @param[in] length The length of the state array.
void IRElectraAc::checksum(uint16_t length) {
if (length < 2) return;
_.Sum = calcChecksum(_.raw, length);
}
#if SEND_ELECTRA_AC
/// Send the current internal state as an IR message.
/// @param[in] repeat Nr. of times the message will be repeated.
void IRElectraAc::send(const uint16_t repeat) {
_irsend.sendElectraAC(getRaw(), kElectraAcStateLength, repeat);
}
#endif // SEND_ELECTRA_AC
/// Get a PTR to the internal state/code for this protocol.
/// @return PTR to a code for this protocol based on the current internal state.
uint8_t *IRElectraAc::getRaw(void) {
checksum();
return _.raw;
}
/// Set the internal state from a valid code for this protocol.
/// @param[in] new_code A valid code for this protocol.
/// @param[in] length The length of the code array.
void IRElectraAc::setRaw(const uint8_t new_code[], const uint16_t length) {
std::memcpy(_.raw, new_code, std::min(length, kElectraAcStateLength));
}
/// Change the power setting to On.
void IRElectraAc::on(void) { setPower(true); }
/// Change the power setting to Off.
void IRElectraAc::off(void) { setPower(false); }
/// Change the power setting.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRElectraAc::setPower(const bool on) {
_.Power = on;
}
/// Get the value of the current power setting.
/// @return true, the setting is on. false, the setting is off.
bool IRElectraAc::getPower(void) const {
return _.Power;
}
/// Set the operating mode of the A/C.
/// @param[in] mode The desired operating mode.
void IRElectraAc::setMode(const uint8_t mode) {
switch (mode) {
case kElectraAcAuto:
case kElectraAcDry:
case kElectraAcCool:
case kElectraAcHeat:
case kElectraAcFan:
_.Mode = mode;
break;
default:
// If we get an unexpected mode, default to AUTO.
_.Mode = kElectraAcAuto;
}
}
/// Get the operating mode setting of the A/C.
/// @return The current operating mode setting.
uint8_t IRElectraAc::getMode(void) const {
return _.Mode;
}
/// Convert a stdAc::opmode_t enum into its native mode.
/// @param[in] mode The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRElectraAc::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kElectraAcCool;
case stdAc::opmode_t::kHeat: return kElectraAcHeat;
case stdAc::opmode_t::kDry: return kElectraAcDry;
case stdAc::opmode_t::kFan: return kElectraAcFan;
default: return kElectraAcAuto;
}
}
/// Convert a native mode into its stdAc equivalent.
/// @param[in] mode The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::opmode_t IRElectraAc::toCommonMode(const uint8_t mode) {
switch (mode) {
case kElectraAcCool: return stdAc::opmode_t::kCool;
case kElectraAcHeat: return stdAc::opmode_t::kHeat;
case kElectraAcDry: return stdAc::opmode_t::kDry;
case kElectraAcFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
/// Set the temperature.
/// @param[in] temp The temperature in degrees celsius.
void IRElectraAc::setTemp(const uint8_t temp) {
uint8_t newtemp = std::max(kElectraAcMinTemp, temp);
newtemp = std::min(kElectraAcMaxTemp, newtemp) - kElectraAcTempDelta;
_.Temp = newtemp;
}
/// Get the current temperature setting.
/// @return The current setting for temp. in degrees celsius.
uint8_t IRElectraAc::getTemp(void) const {
return _.Temp + kElectraAcTempDelta;
}
/// Set the speed of the fan.
/// @param[in] speed The desired setting.
/// @note 0 is auto, 1-3 is the speed
void IRElectraAc::setFan(const uint8_t speed) {
switch (speed) {
case kElectraAcFanAuto:
case kElectraAcFanHigh:
case kElectraAcFanMed:
case kElectraAcFanLow:
_.Fan = speed;
break;
default:
// If we get an unexpected speed, default to Auto.
_.Fan = kElectraAcFanAuto;
}
}
/// Get the current fan speed setting.
/// @return The current fan speed.
uint8_t IRElectraAc::getFan(void) const {
return _.Fan;
}
/// Convert a stdAc::fanspeed_t enum into it's native speed.
/// @param[in] speed The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRElectraAc::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin:
case stdAc::fanspeed_t::kLow: return kElectraAcFanLow;
case stdAc::fanspeed_t::kMedium: return kElectraAcFanMed;
case stdAc::fanspeed_t::kHigh:
case stdAc::fanspeed_t::kMax: return kElectraAcFanHigh;
default: return kElectraAcFanAuto;
}
}
/// Convert a native fan speed into its stdAc equivalent.
/// @param[in] speed The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::fanspeed_t IRElectraAc::toCommonFanSpeed(const uint8_t speed) {
switch (speed) {
case kElectraAcFanHigh: return stdAc::fanspeed_t::kMax;
case kElectraAcFanMed: return stdAc::fanspeed_t::kMedium;
case kElectraAcFanLow: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
/// Set the Vertical Swing mode of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRElectraAc::setSwingV(const bool on) {
_.SwingV = (on ? kElectraAcSwingOn : kElectraAcSwingOff);
}
/// Get the Vertical Swing mode of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRElectraAc::getSwingV(void) const {
return !_.SwingV;
}
/// Set the Horizontal Swing mode of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRElectraAc::setSwingH(const bool on) {
_.SwingH = (on ? kElectraAcSwingOn : kElectraAcSwingOff);
}
/// Get the Horizontal Swing mode of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRElectraAc::getSwingH(void) const {
return !_.SwingH;
}
/// Set the Light (LED) Toggle mode of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRElectraAc::setLightToggle(const bool on) {
_.LightToggle = (on ? kElectraAcLightToggleOn : kElectraAcLightToggleOff);
}
/// Get the Light (LED) Toggle mode of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRElectraAc::getLightToggle(void) const {
return (_.LightToggle & kElectraAcLightToggleMask) ==
kElectraAcLightToggleMask;
}
/// Set the Clean mode of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRElectraAc::setClean(const bool on) {
_.Clean = on;
}
/// Get the Clean mode of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRElectraAc::getClean(void) const {
return _.Clean;
}
/// Set the Turbo mode of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRElectraAc::setTurbo(const bool on) {
_.Turbo = on;
}
/// Get the Turbo mode of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRElectraAc::getTurbo(void) const {
return _.Turbo;
}
/// Convert the current internal state into its stdAc::state_t equivalent.
/// @return The stdAc equivalent of the native settings.
stdAc::state_t IRElectraAc::toCommon(void) const {
stdAc::state_t result;
result.protocol = decode_type_t::ELECTRA_AC;
result.power = _.Power;
result.mode = toCommonMode(_.Mode);
result.celsius = true;
result.degrees = getTemp();
result.fanspeed = toCommonFanSpeed(_.Fan);
result.swingv = getSwingV() ? stdAc::swingv_t::kAuto
: stdAc::swingv_t::kOff;
result.swingh = getSwingH() ? stdAc::swingh_t::kAuto
: stdAc::swingh_t::kOff;
result.light = getLightToggle();
result.turbo = _.Turbo;
result.clean = _.Clean;
// Not supported.
result.model = -1; // No models used.
result.quiet = false;
result.econo = false;
result.filter = false;
result.beep = false;
result.sleep = -1;
result.clock = -1;
return result;
}
/// Convert the current internal state into a human readable string.
/// @return A human readable string.
String IRElectraAc::toString(void) const {
String result = "";
result.reserve(130); // Reserve some heap for the string to reduce fragging.
result += addBoolToString(_.Power, kPowerStr, false);
result += addModeToString(_.Mode, kElectraAcAuto, kElectraAcCool,
kElectraAcHeat, kElectraAcDry, kElectraAcFan);
result += addTempToString(getTemp());
result += addFanToString(_.Fan, kElectraAcFanHigh, kElectraAcFanLow,
kElectraAcFanAuto, kElectraAcFanAuto,
kElectraAcFanMed);
result += addBoolToString(getSwingV(), kSwingVStr);
result += addBoolToString(getSwingH(), kSwingHStr);
result += addLabeledString(getLightToggle() ? kToggleStr : "-", kLightStr);
result += addBoolToString(_.Clean, kCleanStr);
result += addBoolToString(_.Turbo, kTurboStr);
return result;
}
#if DECODE_ELECTRA_AC
/// Decode the supplied Electra A/C message.
/// Status: STABLE / Known working.
/// @param[in,out] results Ptr to the data to decode & where to store the decode
/// result.
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return A boolean. True if it can decode it, false if it can't.
bool IRrecv::decodeElectraAC(decode_results *results, uint16_t offset,
const uint16_t nbits,
const bool strict) {
if (strict) {
if (nbits != kElectraAcBits)
return false; // Not strictly a ELECTRA_AC message.
}
// Match Header + Data + Footer
if (!matchGeneric(results->rawbuf + offset, results->state,
results->rawlen - offset, nbits,
kElectraAcHdrMark, kElectraAcHdrSpace,
kElectraAcBitMark, kElectraAcOneSpace,
kElectraAcBitMark, kElectraAcZeroSpace,
kElectraAcBitMark, kElectraAcMessageGap, true,
_tolerance, 0, false)) return false;
// Compliance
if (strict) {
// Verify the checksum.
if (!IRElectraAc::validChecksum(results->state)) return false;
}
// Success
results->decode_type = decode_type_t::ELECTRA_AC;
results->bits = nbits;
// No need to record the state as we stored it as we decoded it.
// As we use result->state, we don't record value, address, or command as it
// is a union data type.
return true;
}
#endif // DECODE_ELECTRA_AC