Tasmota/lib/lib_basic/IRremoteESP8266-2.7.14/src/ir_Argo.cpp
2021-01-04 18:43:58 +01:00

471 lines
15 KiB
C++

// Copyright 2017 Schmolders
// Copyright 2019 crankyoldgit
/// @file
/// @brief Argo A/C protocol.
/// Controls an Argo Ulisse 13 DCI A/C
#include "ir_Argo.h"
#include <algorithm>
#include <cstring>
#ifndef UNIT_TEST
#include <Arduino.h>
#endif // UNIT_TEST
#include "IRremoteESP8266.h"
#include "IRtext.h"
#include "IRutils.h"
// Constants
// using SPACE modulation. MARK is always const 400u
const uint16_t kArgoHdrMark = 6400;
const uint16_t kArgoHdrSpace = 3300;
const uint16_t kArgoBitMark = 400;
const uint16_t kArgoOneSpace = 2200;
const uint16_t kArgoZeroSpace = 900;
const uint32_t kArgoGap = kDefaultMessageGap; // Made up value. Complete guess.
using irutils::addBoolToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addTempToString;
#if SEND_ARGO
/// Send a Argo A/C formatted message.
/// Status: BETA / Probably works.
/// @param[in] data The message to be sent.
/// @param[in] nbytes The number of bytes of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
void IRsend::sendArgo(const unsigned char data[], const uint16_t nbytes,
const uint16_t repeat) {
// Check if we have enough bytes to send a proper message.
if (nbytes < kArgoStateLength) return;
// TODO(kaschmo): validate
sendGeneric(kArgoHdrMark, kArgoHdrSpace, kArgoBitMark, kArgoOneSpace,
kArgoBitMark, kArgoZeroSpace, 0, 0, // No Footer.
data, nbytes, 38, false, repeat, kDutyDefault);
}
#endif // SEND_ARGO
/// Class constructor
/// @param[in] pin GPIO to be used when sending.
/// @param[in] inverted Is the output signal to be inverted?
/// @param[in] use_modulation Is frequency modulation to be used?
IRArgoAC::IRArgoAC(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { stateReset(); }
/// Set up hardware to be able to send a message.
void IRArgoAC::begin(void) { _irsend.begin(); }
#if SEND_ARGO
/// Send the current internal state as an IR message.
/// @param[in] repeat Nr. of times the message will be repeated.
void IRArgoAC::send(const uint16_t repeat) {
_irsend.sendArgo(getRaw(), kArgoStateLength, repeat);
}
#endif // SEND_ARGO
/// Verify the checksum is valid for a given state.
/// @param[in] state The array to verify the checksum of.
/// @param[in] length The size of the state.
/// @return A boolean indicating if it's checksum is valid.
uint8_t IRArgoAC::calcChecksum(const uint8_t state[], const uint16_t length) {
// Corresponds to byte 11 being constant 0b01
// Only add up bytes to 9. byte 10 is 0b01 constant anyway.
// Assume that argo array is MSB first (left)
return sumBytes(state, length - 2, 2);
}
/// Verify the checksum is valid for a given state.
/// @param[in] state The array to verify the checksum of.
/// @param[in] length The size of the state.
/// @return A boolean indicating if it's checksum is valid.
bool IRArgoAC::validChecksum(const uint8_t state[], const uint16_t length) {
return ((state[length - 2] >> 2) + (state[length - 1] << 6)) ==
IRArgoAC::calcChecksum(state, length);
}
/// Update the checksum for the internal state.
void IRArgoAC::checksum(void) {
uint8_t sum = IRArgoAC::calcChecksum(_.raw, kArgoStateLength);
// Append sum to end of array
// Set const part of checksum bit 10
_.raw[10] = 0b00000010;
_.Sum = sum;
}
/// Reset the internals of the object to a known good state.
void IRArgoAC::stateReset(void) {
for (uint8_t i = 0; i < kArgoStateLength; i++) _.raw[i] = 0x0;
// Argo Message. Store MSB left.
// Default message:
_.raw[0] = 0b10101100; // LSB first (as sent) 0b00110101; //const preamble
_.raw[1] = 0b11110101; // LSB first: 0b10101111; //const preamble
// Keep payload 2-9 at zero
_.raw[10] = 0b00000010; // Const 01
_.Sum = 0;
off();
setTemp(20);
setRoomTemp(25);
setMode(kArgoAuto);
setFan(kArgoFanAuto);
}
/// Get the raw state of the object, suitable to be sent with the appropriate
/// IRsend object method.
/// @return A PTR to the internal state.
uint8_t* IRArgoAC::getRaw(void) {
checksum(); // Ensure correct bit array before returning
return _.raw;
}
/// Set the raw state of the object.
/// @param[in] state The raw state from the native IR message.
void IRArgoAC::setRaw(const uint8_t state[]) {
std::memcpy(_.raw, state, kArgoStateLength);
}
/// Set the internal state to have the power on.
void IRArgoAC::on(void) { setPower(true); }
/// Set the internal state to have the power off.
void IRArgoAC::off(void) { setPower(false); }
/// Set the internal state to have the desired power.
/// @param[in] on The desired power state.
void IRArgoAC::setPower(const bool on) {
_.Power = on;
}
/// Get the power setting from the internal state.
/// @return A boolean indicating the power setting.
bool IRArgoAC::getPower(void) const { return _.Power; }
/// Control the current Max setting. (i.e. Turbo)
/// @param[in] on The desired setting.
void IRArgoAC::setMax(const bool on) {
_.Max = on;
}
/// Is the Max (i.e. Turbo) setting on?
/// @return The current value.
bool IRArgoAC::getMax(void) const { return _.Max; }
/// Set the temperature.
/// @param[in] degrees The temperature in degrees celsius.
/// @note Sending 0 equals +4
void IRArgoAC::setTemp(const uint8_t degrees) {
uint8_t temp = std::max(kArgoMinTemp, degrees);
// delta 4 degrees. "If I want 12 degrees, I need to send 8"
temp = std::min(kArgoMaxTemp, temp) - kArgoTempDelta;
// mask out bits
// argo[13] & 0x00000100; // mask out ON/OFF Bit
_.Temp = temp;
}
/// Get the current temperature setting.
/// @return The current setting for temp. in degrees celsius.
uint8_t IRArgoAC::getTemp(void) const {
return _.Temp + kArgoTempDelta;
}
/// Set the speed of the fan.
/// @param[in] fan The desired setting.
void IRArgoAC::setFan(const uint8_t fan) {
_.Fan = std::min(fan, kArgoFan3);
}
/// Get the current fan speed setting.
/// @return The current fan speed.
uint8_t IRArgoAC::getFan(void) const {
return _.Fan;
}
/// Set the flap position. i.e. Swing.
/// @warning Not yet working!
/// @param[in] flap The desired setting.
void IRArgoAC::setFlap(const uint8_t flap) {
flap_mode = flap;
// TODO(kaschmo): set correct bits for flap mode
}
/// Get the flap position. i.e. Swing.
/// @warning Not yet working!
/// @return The current flap setting.
uint8_t IRArgoAC::getFlap(void) const { return flap_mode; }
/// Get the current operation mode setting.
/// @return The current operation mode.
uint8_t IRArgoAC::getMode(void) const {
return _.Mode;
}
/// Set the desired operation mode.
/// @param[in] mode The desired operation mode.
void IRArgoAC::setMode(const uint8_t mode) {
switch (mode) {
case kArgoCool:
case kArgoDry:
case kArgoAuto:
case kArgoOff:
case kArgoHeat:
case kArgoHeatAuto:
_.Mode = mode;
return;
default:
_.Mode = kArgoAuto;
}
}
/// Turn on/off the Night mode. i.e. Sleep.
/// @param[in] on The desired setting.
void IRArgoAC::setNight(const bool on) {
_.Night = on;
}
/// Get the status of Night mode. i.e. Sleep.
/// @return true if on, false if off.
bool IRArgoAC::getNight(void) const { return _.Night; }
/// Turn on/off the iFeel mode.
/// @param[in] on The desired setting.
void IRArgoAC::setiFeel(const bool on) {
_.iFeel = on;
}
/// Get the status of iFeel mode.
/// @return true if on, false if off.
bool IRArgoAC::getiFeel(void) const { return _.iFeel; }
/// Set the time for the A/C
/// @warning Not yet working!
void IRArgoAC::setTime(void) {
// TODO(kaschmo): use function call from checksum to set time first
}
/// Set the value for the current room temperature.
/// @param[in] degrees The temperature in degrees celsius.
void IRArgoAC::setRoomTemp(const uint8_t degrees) {
uint8_t temp = std::min(degrees, kArgoMaxRoomTemp);
temp = std::max(temp, kArgoTempDelta) - kArgoTempDelta;
_.RoomTemp = temp;
}
/// Get the currently stored value for the room temperature setting.
/// @return The current setting for the room temp. in degrees celsius.
uint8_t IRArgoAC::getRoomTemp(void) const {
return _.RoomTemp + kArgoTempDelta;
}
/// Convert a stdAc::opmode_t enum into its native mode.
/// @param[in] mode The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRArgoAC::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool:
return kArgoCool;
case stdAc::opmode_t::kHeat:
return kArgoHeat;
case stdAc::opmode_t::kDry:
return kArgoDry;
case stdAc::opmode_t::kOff:
return kArgoOff;
// No fan mode.
default:
return kArgoAuto;
}
}
/// Convert a stdAc::fanspeed_t enum into it's native speed.
/// @param[in] speed The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRArgoAC::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin:
case stdAc::fanspeed_t::kLow:
return kArgoFan1;
case stdAc::fanspeed_t::kMedium:
return kArgoFan2;
case stdAc::fanspeed_t::kHigh:
case stdAc::fanspeed_t::kMax:
return kArgoFan3;
default:
return kArgoFanAuto;
}
}
/// Convert a stdAc::swingv_t enum into it's native setting.
/// @param[in] position The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRArgoAC::convertSwingV(const stdAc::swingv_t position) {
switch (position) {
case stdAc::swingv_t::kHighest:
return kArgoFlapFull;
case stdAc::swingv_t::kHigh:
return kArgoFlap5;
case stdAc::swingv_t::kMiddle:
return kArgoFlap4;
case stdAc::swingv_t::kLow:
return kArgoFlap3;
case stdAc::swingv_t::kLowest:
return kArgoFlap1;
default:
return kArgoFlapAuto;
}
}
/// Convert a native mode into its stdAc equivalent.
/// @param[in] mode The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::opmode_t IRArgoAC::toCommonMode(const uint8_t mode) {
switch (mode) {
case kArgoCool: return stdAc::opmode_t::kCool;
case kArgoHeat: return stdAc::opmode_t::kHeat;
case kArgoDry: return stdAc::opmode_t::kDry;
// No fan mode.
default: return stdAc::opmode_t::kAuto;
}
}
/// Convert a native fan speed into its stdAc equivalent.
/// @param[in] speed The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::fanspeed_t IRArgoAC::toCommonFanSpeed(const uint8_t speed) {
switch (speed) {
case kArgoFan3: return stdAc::fanspeed_t::kMax;
case kArgoFan2: return stdAc::fanspeed_t::kMedium;
case kArgoFan1: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
/// Convert the current internal state into its stdAc::state_t equivalent.
/// @return The stdAc equivalent of the native settings.
stdAc::state_t IRArgoAC::toCommon(void) const {
stdAc::state_t result;
result.protocol = decode_type_t::ARGO;
result.power = _.Power;
result.mode = toCommonMode(_.Mode);
result.celsius = true;
result.degrees = getTemp();
result.fanspeed = toCommonFanSpeed(_.Fan);
result.turbo = _.Max;
result.sleep = _.Night ? 0 : -1;
// Not supported.
result.model = -1; // Not supported.
result.swingv = stdAc::swingv_t::kOff;
result.swingh = stdAc::swingh_t::kOff;
result.light = false;
result.filter = false;
result.econo = false;
result.quiet = false;
result.clean = false;
result.beep = false;
result.clock = -1;
return result;
}
/// Convert the current internal state into a human readable string.
/// @return A human readable string.
String IRArgoAC::toString(void) const {
String result = "";
result.reserve(100); // Reserve some heap for the string to reduce fragging.
result += addBoolToString(_.Power, kPowerStr, false);
result += addIntToString(_.Mode, kModeStr);
result += kSpaceLBraceStr;
switch (_.Mode) {
case kArgoAuto:
result += kAutoStr;
break;
case kArgoCool:
result += kCoolStr;
break;
case kArgoHeat:
result += kHeatStr;
break;
case kArgoDry:
result += kDryStr;
break;
case kArgoHeatAuto:
result += kHeatStr;
result += ' ';
result += kAutoStr;
break;
case kArgoOff:
result += kOffStr;
break;
default:
result += kUnknownStr;
}
result += ')';
result += addIntToString(_.Fan, kFanStr);
result += kSpaceLBraceStr;
switch (_.Fan) {
case kArgoFanAuto:
result += kAutoStr;
break;
case kArgoFan3:
result += kMaxStr;
break;
case kArgoFan1:
result += kMinStr;
break;
case kArgoFan2:
result += kMedStr;
break;
default:
result += kUnknownStr;
}
result += ')';
result += addTempToString(getTemp());
result += kCommaSpaceStr;
result += kRoomStr;
result += ' ';
result += addTempToString(getRoomTemp(), true, false);
result += addBoolToString(_.Max, kMaxStr);
result += addBoolToString(_.iFeel, kIFeelStr);
result += addBoolToString(_.Night, kNightStr);
return result;
}
#if DECODE_ARGO
/// Decode the supplied Argo message.
/// Status: BETA / Probably works.
/// @param[in,out] results Ptr to the data to decode & where to store the decode
/// result.
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return A boolean. True if it can decode it, false if it can't.
/// @note This decoder is based soley off sendArgo(). We have no actual captures
/// to test this against. If you have one of these units, please let us know.
bool IRrecv::decodeArgo(decode_results *results, uint16_t offset,
const uint16_t nbits,
const bool strict) {
if (strict && nbits != kArgoBits) return false;
// Match Header + Data
if (!matchGeneric(results->rawbuf + offset, results->state,
results->rawlen - offset, nbits,
kArgoHdrMark, kArgoHdrSpace,
kArgoBitMark, kArgoOneSpace,
kArgoBitMark, kArgoZeroSpace,
0, 0, // Footer (None, allegedly. This seems very wrong.)
true, _tolerance, 0, false)) return false;
// Compliance
// Verify we got a valid checksum.
if (strict && !IRArgoAC::validChecksum(results->state)) return false;
// Success
results->decode_type = decode_type_t::ARGO;
results->bits = nbits;
// No need to record the state as we stored it as we decoded it.
// As we use result->state, we don't record value, address, or command as it
// is a union data type.
return true;
}
#endif // DECODE_ARGO