Tasmota/lib/lib_basic/IRremoteESP8266/src/ir_Panasonic.cpp
2021-03-25 08:40:27 +01:00

1340 lines
54 KiB
C++

// Copyright 2015 Kristian Lauszus
// Copyright 2017, 2018 David Conran
/// @file
/// @brief Support for Panasonic protocols.
/// Panasonic protocol originally added by Kristian Lauszus
/// (Thanks to zenwheel and other people at the original blog post)
/// @see Panasonic https://github.com/z3t0/Arduino-IRremote
/// @see http://www.remotecentral.com/cgi-bin/mboard/rc-pronto/thread.cgi?2615
/// @see Panasonic A/C support heavily influenced by https://github.com/ToniA/ESPEasy/blob/HeatpumpIR/lib/HeatpumpIR/PanasonicHeatpumpIR.cpp
/// Panasonic A/C Clock & Timer support:
/// Reverse Engineering by MikkelTb
/// Code by crankyoldgit
#include "ir_Panasonic.h"
#include <algorithm>
#include <cstring>
#ifndef ARDUINO
#include <string>
#endif
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
// Constants
/// @see http://www.remotecentral.com/cgi-bin/mboard/rc-pronto/thread.cgi?26152
const uint16_t kPanasonicHdrMark = 3456; ///< uSeconds.
const uint16_t kPanasonicHdrSpace = 1728; ///< uSeconds.
const uint16_t kPanasonicBitMark = 432; ///< uSeconds.
const uint16_t kPanasonicOneSpace = 1296; ///< uSeconds.
const uint16_t kPanasonicZeroSpace = 432; ///< uSeconds.
const uint32_t kPanasonicMinCommandLength = 163296; ///< uSeconds.
const uint16_t kPanasonicEndGap = 5000; ///< uSeconds. See #245
const uint32_t kPanasonicMinGap = 74736; ///< uSeconds.
const uint16_t kPanasonicAcSectionGap = 10000; ///< uSeconds.
const uint16_t kPanasonicAcSection1Length = 8;
const uint32_t kPanasonicAcMessageGap = kDefaultMessageGap; // Just a guess.
const uint16_t kPanasonicAc32HdrMark = 3543; ///< uSeconds.
const uint16_t kPanasonicAc32BitMark = 920; ///< uSeconds.
const uint16_t kPanasonicAc32HdrSpace = 3450; ///< uSeconds.
const uint16_t kPanasonicAc32OneSpace = 2575; ///< uSeconds.
const uint16_t kPanasonicAc32ZeroSpace = 828; ///< uSeconds.
const uint16_t kPanasonicAc32SectionGap = 13946; ///< uSeconds.
const uint8_t kPanasonicAc32Sections = 2;
const uint8_t kPanasonicAc32BlocksPerSection = 2;
using irutils::addBoolToString;
using irutils::addFanToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addModelToString;
using irutils::addSwingHToString;
using irutils::addSwingVToString;
using irutils::addTempToString;
using irutils::minsToString;
using irutils::setBit;
using irutils::setBits;
// Used by Denon as well.
#if (SEND_PANASONIC || SEND_DENON)
/// Send a Panasonic formatted message.
/// Status: STABLE / Should be working.
/// @param[in] data The message to be sent.
/// @param[in] nbits The number of bits of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
/// @note This protocol is a modified version of Kaseikyo.
/// @note Use this method if you want to send the results of `decodePanasonic`.
void IRsend::sendPanasonic64(const uint64_t data, const uint16_t nbits,
const uint16_t repeat) {
sendGeneric(kPanasonicHdrMark, kPanasonicHdrSpace, kPanasonicBitMark,
kPanasonicOneSpace, kPanasonicBitMark, kPanasonicZeroSpace,
kPanasonicBitMark, kPanasonicMinGap, kPanasonicMinCommandLength,
data, nbits, kPanasonicFreq, true, repeat, 50);
}
/// Send a Panasonic formatted message.
/// Status: STABLE, but DEPRECATED
/// @deprecated This is only for legacy use only, please use `sendPanasonic64()`
/// instead.
/// @param[in] address The 16-bit manufacturer code.
/// @param[in] data The 32-bit data portion of the message to be sent.
/// @param[in] nbits The number of bits of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
/// @note This protocol is a modified version of Kaseikyo.
void IRsend::sendPanasonic(const uint16_t address, const uint32_t data,
const uint16_t nbits, const uint16_t repeat) {
sendPanasonic64(((uint64_t)address << 32) | (uint64_t)data, nbits, repeat);
}
/// Calculate the raw Panasonic data based on device, subdevice, & function.
/// Status: STABLE / Should be working.
/// @param[in] manufacturer A 16-bit manufacturer code. e.g. 0x4004 is Panasonic
/// @param[in] device An 8-bit code.
/// @param[in] subdevice An 8-bit code.
/// @param[in] function An 8-bit code.
/// @return A value suitable for use with `sendPanasonic64()`.
/// @note Panasonic 48-bit protocol is a modified version of Kaseikyo.
/// @see http://www.remotecentral.com/cgi-bin/mboard/rc-pronto/thread.cgi?2615
uint64_t IRsend::encodePanasonic(const uint16_t manufacturer,
const uint8_t device,
const uint8_t subdevice,
const uint8_t function) {
uint8_t checksum = device ^ subdevice ^ function;
return (((uint64_t)manufacturer << 32) | ((uint64_t)device << 24) |
((uint64_t)subdevice << 16) | ((uint64_t)function << 8) | checksum);
}
#endif // (SEND_PANASONIC || SEND_DENON)
// Used by Denon as well.
#if (DECODE_PANASONIC || DECODE_DENON)
/// Decode the supplied Panasonic message.
/// Status: STABLE / Should be working.
/// @param[in,out] results Ptr to the data to decode & where to store the result
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] manufacturer A 16-bit manufacturer code. e.g. 0x4004 is Panasonic
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return True if it can decode it, false if it can't.
/// @warning Results to be used with `sendPanasonic64()`, not `sendPanasonic()`.
/// @note Panasonic 48-bit protocol is a modified version of Kaseikyo.
/// @see http://www.remotecentral.com/cgi-bin/mboard/rc-pronto/thread.cgi?2615
/// @see http://www.hifi-remote.com/wiki/index.php?title=Panasonic
bool IRrecv::decodePanasonic(decode_results *results, uint16_t offset,
const uint16_t nbits, const bool strict,
const uint32_t manufacturer) {
if (strict && nbits != kPanasonicBits)
return false; // Request is out of spec.
uint64_t data = 0;
// Match Header + Data + Footer
if (!matchGeneric(results->rawbuf + offset, &data,
results->rawlen - offset, nbits,
kPanasonicHdrMark, kPanasonicHdrSpace,
kPanasonicBitMark, kPanasonicOneSpace,
kPanasonicBitMark, kPanasonicZeroSpace,
kPanasonicBitMark, kPanasonicEndGap, true)) return false;
// Compliance
uint32_t address = data >> 32;
uint32_t command = data;
if (strict) {
if (address != manufacturer) // Verify the Manufacturer code.
return false;
// Verify the checksum.
uint8_t checksumOrig = data;
uint8_t checksumCalc = (data >> 24) ^ (data >> 16) ^ (data >> 8);
if (checksumOrig != checksumCalc) return false;
}
// Success
results->value = data;
results->address = address;
results->command = command;
results->decode_type = decode_type_t::PANASONIC;
results->bits = nbits;
return true;
}
#endif // (DECODE_PANASONIC || DECODE_DENON)
#if SEND_PANASONIC_AC
/// Send a Panasonic A/C message.
/// Status: STABLE / Work with real device(s).
/// @param[in] data The message to be sent.
/// @param[in] nbytes The number of bytes of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
void IRsend::sendPanasonicAC(const uint8_t data[], const uint16_t nbytes,
const uint16_t repeat) {
if (nbytes < kPanasonicAcSection1Length) return;
for (uint16_t r = 0; r <= repeat; r++) {
// First section. (8 bytes)
sendGeneric(kPanasonicHdrMark, kPanasonicHdrSpace, kPanasonicBitMark,
kPanasonicOneSpace, kPanasonicBitMark, kPanasonicZeroSpace,
kPanasonicBitMark, kPanasonicAcSectionGap, data,
kPanasonicAcSection1Length, kPanasonicFreq, false, 0, 50);
// First section. (The rest of the data bytes)
sendGeneric(kPanasonicHdrMark, kPanasonicHdrSpace, kPanasonicBitMark,
kPanasonicOneSpace, kPanasonicBitMark, kPanasonicZeroSpace,
kPanasonicBitMark, kPanasonicAcMessageGap,
data + kPanasonicAcSection1Length,
nbytes - kPanasonicAcSection1Length, kPanasonicFreq, false, 0,
50);
}
}
#endif // SEND_PANASONIC_AC
/// Class constructor
/// @param[in] pin GPIO to be used when sending.
/// @param[in] inverted Is the output signal to be inverted?
/// @param[in] use_modulation Is frequency modulation to be used?
IRPanasonicAc::IRPanasonicAc(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { stateReset(); }
/// Reset the state of the remote to a known good state/sequence.
void IRPanasonicAc::stateReset(void) {
memcpy(remote_state, kPanasonicKnownGoodState, kPanasonicAcStateLength);
_temp = 25; // An initial saved desired temp. Completely made up.
_swingh = kPanasonicAcSwingHMiddle; // A similar made up value for H Swing.
}
/// Set up hardware to be able to send a message.
void IRPanasonicAc::begin(void) { _irsend.begin(); }
/// Verify the checksum is valid for a given state.
/// @param[in] state The array to verify the checksum of.
/// @param[in] length The length of the state array.
/// @return true, if the state has a valid checksum. Otherwise, false.
bool IRPanasonicAc::validChecksum(const uint8_t *state, const uint16_t length) {
if (length < 2) return false; // 1 byte of data can't have a checksum.
return (state[length - 1] ==
sumBytes(state, length - 1, kPanasonicAcChecksumInit));
}
/// Calculate the checksum for a given state.
/// @param[in] state The value to calc the checksum of.
/// @param[in] length The size/length of the state.
/// @return The calculated checksum value.
uint8_t IRPanasonicAc::calcChecksum(const uint8_t *state,
const uint16_t length) {
return sumBytes(state, length - 1, kPanasonicAcChecksumInit);
}
/// Calculate and set the checksum values for the internal state.
/// @param[in] length The size/length of the state.
void IRPanasonicAc::fixChecksum(const uint16_t length) {
remote_state[length - 1] = calcChecksum(remote_state, length);
}
#if SEND_PANASONIC_AC
/// Send the current internal state as an IR message.
/// @param[in] repeat Nr. of times the message will be repeated.
void IRPanasonicAc::send(const uint16_t repeat) {
_irsend.sendPanasonicAC(getRaw(), kPanasonicAcStateLength, repeat);
}
#endif // SEND_PANASONIC_AC
/// Set the model of the A/C to emulate.
/// @param[in] model The enum of the appropriate model.
void IRPanasonicAc::setModel(const panasonic_ac_remote_model_t model) {
switch (model) {
case panasonic_ac_remote_model_t::kPanasonicDke:
case panasonic_ac_remote_model_t::kPanasonicJke:
case panasonic_ac_remote_model_t::kPanasonicLke:
case panasonic_ac_remote_model_t::kPanasonicNke:
case panasonic_ac_remote_model_t::kPanasonicCkp:
case panasonic_ac_remote_model_t::kPanasonicRkr: break;
// Only proceed if we know what to do.
default: return;
}
// clear & set the various bits and bytes.
remote_state[13] &= 0xF0;
remote_state[17] = 0x00;
remote_state[21] &= 0b11101111;
remote_state[23] = 0x81;
remote_state[25] = 0x00;
switch (model) {
case kPanasonicLke:
remote_state[13] |= 0x02;
remote_state[17] = 0x06;
break;
case kPanasonicDke:
remote_state[23] = 0x01;
remote_state[25] = 0x06;
// Has to be done last as setSwingHorizontal has model check built-in
setSwingHorizontal(_swingh);
break;
case kPanasonicNke:
remote_state[17] = 0x06;
break;
case kPanasonicJke:
break;
case kPanasonicCkp:
remote_state[21] |= 0x10;
remote_state[23] = 0x01;
break;
case kPanasonicRkr:
remote_state[13] |= 0x08;
remote_state[23] = 0x89;
default:
break;
}
// Reset the Ion filter.
setIon(getIon());
}
/// Get/Detect the model of the A/C.
/// @return The enum of the compatible model.
panasonic_ac_remote_model_t IRPanasonicAc::getModel(void) {
if (remote_state[23] == 0x89) return kPanasonicRkr;
if (remote_state[17] == 0x00) {
if ((remote_state[21] & 0x10) && (remote_state[23] & 0x01))
return panasonic_ac_remote_model_t::kPanasonicCkp;
if (remote_state[23] & 0x80)
return panasonic_ac_remote_model_t::kPanasonicJke;
}
if (remote_state[17] == 0x06 && (remote_state[13] & 0x0F) == 0x02)
return panasonic_ac_remote_model_t::kPanasonicLke;
if (remote_state[23] == 0x01)
return panasonic_ac_remote_model_t::kPanasonicDke;
if (remote_state[17] == 0x06)
return panasonic_ac_remote_model_t::kPanasonicNke;
return panasonic_ac_remote_model_t::kPanasonicUnknown; // Default
}
/// Get a PTR to the internal state/code for this protocol.
/// @return PTR to a code for this protocol based on the current internal state.
uint8_t *IRPanasonicAc::getRaw(void) {
fixChecksum();
return remote_state;
}
/// Set the internal state from a valid code for this protocol.
/// @param[in] state A valid code for this protocol.
void IRPanasonicAc::setRaw(const uint8_t state[]) {
memcpy(remote_state, state, kPanasonicAcStateLength);
}
/// Control the power state of the A/C unit.
/// @param[in] on true, the setting is on. false, the setting is off.
/// @warning For CKP models, the remote has no memory of the power state the A/C
/// unit should be in. For those models setting this on/true will toggle the
/// power state of the Panasonic A/C unit with the next message.
/// e.g. If the A/C unit is already on, setPower(true) will turn it off.
/// If the A/C unit is already off, setPower(true) will turn it on.
/// `setPower(false)` will leave the A/C power state as it was.
/// For all other models, setPower(true) should set the internal state to
/// turn it on, and setPower(false) should turn it off.
void IRPanasonicAc::setPower(const bool on) {
setBit(&remote_state[13], kPanasonicAcPowerOffset, on);
}
/// Get the A/C power state of the remote.
/// @return true, the setting is on. false, the setting is off.
/// @warning Except for CKP models, where it returns if the power state will be
/// toggled on the A/C unit when the next message is sent.
bool IRPanasonicAc::getPower(void) {
return GETBIT8(remote_state[13], kPanasonicAcPowerOffset);
}
/// Change the power setting to On.
void IRPanasonicAc::on(void) { setPower(true); }
/// Change the power setting to Off.
void IRPanasonicAc::off(void) { setPower(false); }
/// Get the operating mode setting of the A/C.
/// @return The current operating mode setting.
uint8_t IRPanasonicAc::getMode(void) {
return GETBITS8(remote_state[13], kHighNibble, kModeBitsSize);
}
/// Set the operating mode of the A/C.
/// @param[in] desired The desired operating mode.
void IRPanasonicAc::setMode(const uint8_t desired) {
uint8_t mode = kPanasonicAcAuto; // Default to Auto mode.
switch (desired) {
case kPanasonicAcFan:
// Allegedly Fan mode has a temperature of 27.
setTemp(kPanasonicAcFanModeTemp, false);
mode = desired;
break;
case kPanasonicAcAuto:
case kPanasonicAcCool:
case kPanasonicAcHeat:
case kPanasonicAcDry:
mode = desired;
// Set the temp to the saved temp, just incase our previous mode was Fan.
setTemp(_temp);
break;
}
remote_state[13] &= 0x0F; // Clear the previous mode bits.
setBits(&remote_state[13], kHighNibble, kModeBitsSize, mode);
}
/// Get the current temperature setting.
/// @return The current setting for temp. in degrees celsius.
uint8_t IRPanasonicAc::getTemp(void) {
return GETBITS8(remote_state[14], kPanasonicAcTempOffset,
kPanasonicAcTempSize);
}
/// Set the temperature.
/// @param[in] celsius The temperature in degrees celsius.
/// @param[in] remember: A flag for the class to remember the temperature.
/// @note Automatically safely limits the temp to the operating range supported.
void IRPanasonicAc::setTemp(const uint8_t celsius, const bool remember) {
uint8_t temperature;
temperature = std::max(celsius, kPanasonicAcMinTemp);
temperature = std::min(temperature, kPanasonicAcMaxTemp);
if (remember) _temp = temperature;
setBits(&remote_state[14], kPanasonicAcTempOffset, kPanasonicAcTempSize,
temperature);
}
/// Get the current vertical swing setting.
/// @return The current position it is set to.
uint8_t IRPanasonicAc::getSwingVertical(void) {
return GETBITS8(remote_state[16], kLowNibble, kNibbleSize);
}
/// Control the vertical swing setting.
/// @param[in] desired_elevation The position to set the vertical swing to.
void IRPanasonicAc::setSwingVertical(const uint8_t desired_elevation) {
uint8_t elevation = desired_elevation;
if (elevation != kPanasonicAcSwingVAuto) {
elevation = std::max(elevation, kPanasonicAcSwingVHighest);
elevation = std::min(elevation, kPanasonicAcSwingVLowest);
}
setBits(&remote_state[16], kLowNibble, kNibbleSize, elevation);
}
/// Get the current horizontal swing setting.
/// @return The current position it is set to.
uint8_t IRPanasonicAc::getSwingHorizontal(void) {
return GETBITS8(remote_state[17], kLowNibble, kNibbleSize);
}
/// Control the horizontal swing setting.
/// @param[in] desired_direction The position to set the horizontal swing to.
void IRPanasonicAc::setSwingHorizontal(const uint8_t desired_direction) {
switch (desired_direction) {
case kPanasonicAcSwingHAuto:
case kPanasonicAcSwingHMiddle:
case kPanasonicAcSwingHFullLeft:
case kPanasonicAcSwingHLeft:
case kPanasonicAcSwingHRight:
case kPanasonicAcSwingHFullRight: break;
// Ignore anything that isn't valid.
default: return;
}
_swingh = desired_direction; // Store the direction for later.
uint8_t direction = desired_direction;
switch (getModel()) {
case kPanasonicDke:
case kPanasonicRkr:
break;
case kPanasonicNke:
case kPanasonicLke:
direction = kPanasonicAcSwingHMiddle;
break;
default: // Ignore everything else.
return;
}
setBits(&remote_state[17], kLowNibble, kNibbleSize, direction);
}
/// Set the speed of the fan.
/// @param[in] speed The desired setting.
void IRPanasonicAc::setFan(const uint8_t speed) {
switch (speed) {
case kPanasonicAcFanMin:
case kPanasonicAcFanMed:
case kPanasonicAcFanMax:
case kPanasonicAcFanAuto:
setBits(&remote_state[16], kHighNibble, kNibbleSize,
speed + kPanasonicAcFanDelta);
break;
default: setFan(kPanasonicAcFanAuto);
}
}
/// Get the current fan speed setting.
/// @return The current fan speed.
uint8_t IRPanasonicAc::getFan(void) {
return GETBITS8(remote_state[16], kHighNibble, kNibbleSize) -
kPanasonicAcFanDelta;
}
/// Get the Quiet setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRPanasonicAc::getQuiet(void) {
switch (getModel()) {
case kPanasonicRkr:
case kPanasonicCkp:
return GETBIT8(remote_state[21], kPanasonicAcQuietCkpOffset);
default:
return GETBIT8(remote_state[21], kPanasonicAcQuietOffset);
}
}
/// Set the Quiet setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRPanasonicAc::setQuiet(const bool on) {
uint8_t offset;
switch (getModel()) {
case kPanasonicRkr:
case kPanasonicCkp: offset = kPanasonicAcQuietCkpOffset; break;
default: offset = kPanasonicAcQuietOffset;
}
if (on) setPowerful(false); // Powerful is mutually exclusive.
setBit(&remote_state[21], offset, on);
}
/// Get the Powerful (Turbo) setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRPanasonicAc::getPowerful(void) {
switch (getModel()) {
case kPanasonicRkr:
case kPanasonicCkp:
return GETBIT8(remote_state[21], kPanasonicAcPowerfulCkpOffset);
default:
return GETBIT8(remote_state[21], kPanasonicAcPowerfulOffset);
}
}
/// Set the Powerful (Turbo) setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRPanasonicAc::setPowerful(const bool on) {
uint8_t offset;
switch (getModel()) {
case kPanasonicRkr:
case kPanasonicCkp: offset = kPanasonicAcPowerfulCkpOffset; break;
default: offset = kPanasonicAcPowerfulOffset;
}
if (on) setQuiet(false); // Quiet is mutually exclusive.
setBit(&remote_state[21], offset, on);
}
/// Convert standard (military/24hr) time to nr. of minutes since midnight.
/// @param[in] hours The hours component of the time.
/// @param[in] mins The minutes component of the time.
/// @return The nr of minutes since midnight.
uint16_t IRPanasonicAc::encodeTime(const uint8_t hours, const uint8_t mins) {
return std::min(hours, (uint8_t)23) * 60 + std::min(mins, (uint8_t)59);
}
/// Get the time from a given pointer location.
/// @param[in] ptr A pointer to a time location in a state.
/// @return The time expressed as nr. of minutes past midnight.
/// @note Internal use only.
uint16_t IRPanasonicAc::_getTime(const uint8_t ptr[]) {
uint16_t result = (GETBITS8(
ptr[1], kLowNibble, kPanasonicAcTimeOverflowSize) <<
(kPanasonicAcTimeSize - kPanasonicAcTimeOverflowSize)) + ptr[0];
if (result == kPanasonicAcTimeSpecial) return 0;
return result;
}
/// Get the current clock time value.
/// @return The time expressed as nr. of minutes past midnight.
uint16_t IRPanasonicAc::getClock(void) { return _getTime(&remote_state[24]); }
/// Set the time at a given pointer location.
/// @param[in, out] ptr A pointer to a time location in a state.
/// @param[in] mins_since_midnight The time as nr. of minutes past midnight.
/// @param[in] round_down Do we round to the nearest 10 minute mark?
/// @note Internal use only.
void IRPanasonicAc::_setTime(uint8_t * const ptr,
const uint16_t mins_since_midnight,
const bool round_down) {
uint16_t corrected = std::min(mins_since_midnight, kPanasonicAcTimeMax);
if (round_down) corrected -= corrected % 10;
if (mins_since_midnight == kPanasonicAcTimeSpecial)
corrected = kPanasonicAcTimeSpecial;
ptr[0] = corrected;
setBits(&ptr[1], kLowNibble, kPanasonicAcTimeOverflowSize,
corrected >> (kPanasonicAcTimeSize - kPanasonicAcTimeOverflowSize));
}
/// Set the current clock time value.
/// @param[in] mins_since_midnight The time as nr. of minutes past midnight.
void IRPanasonicAc::setClock(const uint16_t mins_since_midnight) {
_setTime(&remote_state[24], mins_since_midnight, false);
}
/// Get the On Timer time value.
/// @return The time expressed as nr. of minutes past midnight.
uint16_t IRPanasonicAc::getOnTimer(void) { return _getTime(&remote_state[18]); }
/// Set/Enable the On Timer.
/// @param[in] mins_since_midnight The time as nr. of minutes past midnight.
/// @param[in] enable Do we enable the timer or not?
void IRPanasonicAc::setOnTimer(const uint16_t mins_since_midnight,
const bool enable) {
// Set the timer flag.
setBit(&remote_state[13], kPanasonicAcOnTimerOffset, enable);
// Store the time.
_setTime(&remote_state[18], mins_since_midnight, true);
}
/// Cancel the On Timer.
void IRPanasonicAc::cancelOnTimer(void) { setOnTimer(0, false); }
/// Check if the On Timer is Enabled.
/// @return true, the setting is on. false, the setting is off.
bool IRPanasonicAc::isOnTimerEnabled(void) {
return GETBIT8(remote_state[13], kPanasonicAcOnTimerOffset);
}
/// Get the Off Timer time value.
/// @return The time expressed as nr. of minutes past midnight.
uint16_t IRPanasonicAc::getOffTimer(void) {
uint16_t result = (GETBITS8(remote_state[20], 0, 7) << kNibbleSize) |
GETBITS8(remote_state[19], kHighNibble, kNibbleSize);
if (result == kPanasonicAcTimeSpecial) return 0;
return result;
}
/// Set/Enable the Off Timer.
/// @param[in] mins_since_midnight The time as nr. of minutes past midnight.
/// @param[in] enable Do we enable the timer or not?
void IRPanasonicAc::setOffTimer(const uint16_t mins_since_midnight,
const bool enable) {
// Ensure its on a 10 minute boundary and no overflow.
uint16_t corrected = std::min(mins_since_midnight, kPanasonicAcTimeMax);
corrected -= corrected % 10;
if (mins_since_midnight == kPanasonicAcTimeSpecial)
corrected = kPanasonicAcTimeSpecial;
// Set the timer flag.
setBit(&remote_state[13], kPanasonicAcOffTimerOffset, enable);
// Store the time.
setBits(&remote_state[19], kHighNibble, kNibbleSize, corrected);
setBits(&remote_state[20], 0, 7, corrected >> kNibbleSize);
}
/// Cancel the Off Timer.
void IRPanasonicAc::cancelOffTimer(void) { setOffTimer(0, false); }
/// Check if the Off Timer is Enabled.
/// @return true, the setting is on. false, the setting is off.
bool IRPanasonicAc::isOffTimerEnabled(void) {
return GETBIT8(remote_state[13], kPanasonicAcOffTimerOffset);
}
/// Get the Ion (filter) setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRPanasonicAc::getIon(void) {
switch (getModel()) {
case kPanasonicDke:
return GETBIT8(remote_state[kPanasonicAcIonFilterByte],
kPanasonicAcIonFilterOffset);
default:
return false;
}
}
/// Set the Ion (filter) setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRPanasonicAc::setIon(const bool on) {
if (getModel() == kPanasonicDke)
setBit(&remote_state[kPanasonicAcIonFilterByte],
kPanasonicAcIonFilterOffset, on);
}
/// Convert a stdAc::opmode_t enum into its native mode.
/// @param[in] mode The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRPanasonicAc::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kPanasonicAcCool;
case stdAc::opmode_t::kHeat: return kPanasonicAcHeat;
case stdAc::opmode_t::kDry: return kPanasonicAcDry;
case stdAc::opmode_t::kFan: return kPanasonicAcFan;
default: return kPanasonicAcAuto;
}
}
/// Convert a stdAc::fanspeed_t enum into it's native speed.
/// @param[in] speed The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRPanasonicAc::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin: return kPanasonicAcFanMin;
case stdAc::fanspeed_t::kLow: return kPanasonicAcFanMin + 1;
case stdAc::fanspeed_t::kMedium: return kPanasonicAcFanMin + 2;
case stdAc::fanspeed_t::kHigh: return kPanasonicAcFanMin + 3;
case stdAc::fanspeed_t::kMax: return kPanasonicAcFanMax;
default: return kPanasonicAcFanAuto;
}
}
/// Convert a standard A/C vertical swing into its native setting.
/// @param[in] position A stdAc::swingv_t position to convert.
/// @return The equivalent native horizontal swing position.
uint8_t IRPanasonicAc::convertSwingV(const stdAc::swingv_t position) {
switch (position) {
case stdAc::swingv_t::kHighest:
case stdAc::swingv_t::kHigh:
case stdAc::swingv_t::kMiddle:
case stdAc::swingv_t::kLow:
case stdAc::swingv_t::kLowest: return (uint8_t)position;
default: return kPanasonicAcSwingVAuto;
}
}
/// Convert a standard A/C horizontal swing into its native setting.
/// @param[in] position A stdAc::swingh_t position to convert.
/// @return The equivalent native horizontal swing position.
uint8_t IRPanasonicAc::convertSwingH(const stdAc::swingh_t position) {
switch (position) {
case stdAc::swingh_t::kLeftMax: return kPanasonicAcSwingHFullLeft;
case stdAc::swingh_t::kLeft: return kPanasonicAcSwingHLeft;
case stdAc::swingh_t::kMiddle: return kPanasonicAcSwingHMiddle;
case stdAc::swingh_t::kRight: return kPanasonicAcSwingHRight;
case stdAc::swingh_t::kRightMax: return kPanasonicAcSwingHFullRight;
default: return kPanasonicAcSwingHAuto;
}
}
/// Convert a native mode into its stdAc equivalent.
/// @param[in] mode The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::opmode_t IRPanasonicAc::toCommonMode(const uint8_t mode) {
switch (mode) {
case kPanasonicAcCool: return stdAc::opmode_t::kCool;
case kPanasonicAcHeat: return stdAc::opmode_t::kHeat;
case kPanasonicAcDry: return stdAc::opmode_t::kDry;
case kPanasonicAcFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
/// Convert a native fan speed into its stdAc equivalent.
/// @param[in] spd The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::fanspeed_t IRPanasonicAc::toCommonFanSpeed(const uint8_t spd) {
switch (spd) {
case kPanasonicAcFanMax: return stdAc::fanspeed_t::kMax;
case kPanasonicAcFanMin + 3: return stdAc::fanspeed_t::kHigh;
case kPanasonicAcFanMin + 2: return stdAc::fanspeed_t::kMedium;
case kPanasonicAcFanMin + 1: return stdAc::fanspeed_t::kLow;
case kPanasonicAcFanMin: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
/// Convert a native horizontal swing postion to it's common equivalent.
/// @param[in] pos A native position to convert.
/// @return The common horizontal swing position.
stdAc::swingh_t IRPanasonicAc::toCommonSwingH(const uint8_t pos) {
switch (pos) {
case kPanasonicAcSwingHFullLeft: return stdAc::swingh_t::kLeftMax;
case kPanasonicAcSwingHLeft: return stdAc::swingh_t::kLeft;
case kPanasonicAcSwingHMiddle: return stdAc::swingh_t::kMiddle;
case kPanasonicAcSwingHRight: return stdAc::swingh_t::kRight;
case kPanasonicAcSwingHFullRight: return stdAc::swingh_t::kRightMax;
default: return stdAc::swingh_t::kAuto;
}
}
/// Convert a native vertical swing postion to it's common equivalent.
/// @param[in] pos A native position to convert.
/// @return The common vertical swing position.
stdAc::swingv_t IRPanasonicAc::toCommonSwingV(const uint8_t pos) {
if (pos >= kPanasonicAcSwingVHighest && pos <= kPanasonicAcSwingVLowest)
return (stdAc::swingv_t)pos;
else
return stdAc::swingv_t::kAuto;
}
/// Convert the current internal state into its stdAc::state_t equivalent.
/// @return The stdAc equivalent of the native settings.
stdAc::state_t IRPanasonicAc::toCommon(void) {
stdAc::state_t result;
result.protocol = decode_type_t::PANASONIC_AC;
result.model = getModel();
result.power = getPower();
result.mode = toCommonMode(getMode());
result.celsius = true;
result.degrees = getTemp();
result.fanspeed = toCommonFanSpeed(getFan());
result.swingv = toCommonSwingV(getSwingVertical());
result.swingh = toCommonSwingH(getSwingHorizontal());
result.quiet = getQuiet();
result.turbo = getPowerful();
result.filter = getIon();
// Not supported.
result.econo = false;
result.clean = false;
result.light = false;
result.beep = false;
result.sleep = -1;
result.clock = -1;
return result;
}
/// Convert the internal state into a human readable string.
/// @return A string containing the settings in human-readable form.
String IRPanasonicAc::toString(void) {
String result = "";
result.reserve(180); // Reserve some heap for the string to reduce fragging.
result += addModelToString(decode_type_t::PANASONIC_AC, getModel(), false);
result += addBoolToString(getPower(), kPowerStr);
result += addModeToString(getMode(), kPanasonicAcAuto, kPanasonicAcCool,
kPanasonicAcHeat, kPanasonicAcDry, kPanasonicAcFan);
result += addTempToString(getTemp());
result += addFanToString(getFan(), kPanasonicAcFanMax, kPanasonicAcFanMin,
kPanasonicAcFanAuto, kPanasonicAcFanAuto,
kPanasonicAcFanMed);
result += addSwingVToString(getSwingVertical(), kPanasonicAcSwingVAuto,
kPanasonicAcSwingVHighest,
kPanasonicAcSwingVHigh,
kPanasonicAcSwingVAuto, // Upper Middle is unused
kPanasonicAcSwingVMiddle,
kPanasonicAcSwingVAuto, // Lower Middle is unused
kPanasonicAcSwingVLow,
kPanasonicAcSwingVLowest,
// Below are unused.
kPanasonicAcSwingVAuto,
kPanasonicAcSwingVAuto,
kPanasonicAcSwingVAuto,
kPanasonicAcSwingVAuto);
switch (getModel()) {
case kPanasonicJke:
case kPanasonicCkp:
break; // No Horizontal Swing support.
default:
result += addSwingHToString(getSwingHorizontal(), kPanasonicAcSwingHAuto,
kPanasonicAcSwingHFullLeft,
kPanasonicAcSwingHLeft,
kPanasonicAcSwingHMiddle,
kPanasonicAcSwingHRight,
kPanasonicAcSwingHFullRight,
// Below are unused.
kPanasonicAcSwingHAuto,
kPanasonicAcSwingHAuto,
kPanasonicAcSwingHAuto,
kPanasonicAcSwingHAuto,
kPanasonicAcSwingHAuto);
}
result += addBoolToString(getQuiet(), kQuietStr);
result += addBoolToString(getPowerful(), kPowerfulStr);
if (getModel() == kPanasonicDke)
result += addBoolToString(getIon(), kIonStr);
result += addLabeledString(minsToString(getClock()), kClockStr);
result += addLabeledString(
isOnTimerEnabled() ? minsToString(getOnTimer()) : kOffStr,
kOnTimerStr);
result += addLabeledString(
isOffTimerEnabled() ? minsToString(getOffTimer()) : kOffStr,
kOffTimerStr);
return result;
}
#if DECODE_PANASONIC_AC
/// Decode the supplied Panasonic AC message.
/// Status: STABLE / Works with real device(s).
/// @param[in,out] results Ptr to the data to decode & where to store the result
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return True if it can decode it, false if it can't.
bool IRrecv::decodePanasonicAC(decode_results *results, uint16_t offset,
const uint16_t nbits, const bool strict) {
uint8_t min_nr_of_messages = 1;
if (strict) {
if (nbits != kPanasonicAcBits && nbits != kPanasonicAcShortBits)
return false; // Not strictly a PANASONIC_AC message.
}
if (results->rawlen <=
min_nr_of_messages * (2 * nbits + kHeader + kFooter) - 1 + offset)
return false; // Can't possibly be a valid PANASONIC_AC message.
// Match Header + Data #1 + Footer
uint16_t used;
used = matchGeneric(results->rawbuf + offset, results->state,
results->rawlen - offset, kPanasonicAcSection1Length * 8,
kPanasonicHdrMark, kPanasonicHdrSpace,
kPanasonicBitMark, kPanasonicOneSpace,
kPanasonicBitMark, kPanasonicZeroSpace,
kPanasonicBitMark, kPanasonicAcSectionGap, false,
kPanasonicAcTolerance, kPanasonicAcExcess, false);
if (!used) return false;
offset += used;
// Match Header + Data #2 + Footer
if (!matchGeneric(results->rawbuf + offset,
results->state + kPanasonicAcSection1Length,
results->rawlen - offset,
nbits - kPanasonicAcSection1Length * 8,
kPanasonicHdrMark, kPanasonicHdrSpace,
kPanasonicBitMark, kPanasonicOneSpace,
kPanasonicBitMark, kPanasonicZeroSpace,
kPanasonicBitMark, kPanasonicAcMessageGap, true,
kPanasonicAcTolerance, kPanasonicAcExcess, false))
return false;
// Compliance
if (strict) {
// Check the signatures of the section blocks. They start with 0x02& 0x20.
if (results->state[0] != 0x02 || results->state[1] != 0x20 ||
results->state[8] != 0x02 || results->state[9] != 0x20)
return false;
if (!IRPanasonicAc::validChecksum(results->state, nbits / 8)) return false;
}
// Success
results->decode_type = decode_type_t::PANASONIC_AC;
results->bits = nbits;
return true;
}
#endif // DECODE_PANASONIC_AC
#if SEND_PANASONIC_AC32
/// Send a Panasonic AC 32/16bit formatted message.
/// Status: STABLE / Confirmed working.
/// @param[in] data containing the IR command.
/// @param[in] nbits Nr. of bits to send. Usually kPanasonicAc32Bits
/// @param[in] repeat Nr. of times the message is to be repeated.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1307
void IRsend::sendPanasonicAC32(const uint64_t data, const uint16_t nbits,
const uint16_t repeat) {
uint16_t section_bits;
uint16_t sections;
uint16_t blocks;
// Calculate the section, block, and bit sizes based on the requested bit size
if (nbits > kPanasonicAc32Bits / 2) { // A long message
section_bits = nbits / kPanasonicAc32Sections;
sections = kPanasonicAc32Sections;
blocks = kPanasonicAc32BlocksPerSection;
} else { // A short message
section_bits = nbits;
sections = kPanasonicAc32Sections - 1;
blocks = kPanasonicAc32BlocksPerSection + 1;
}
for (uint16_t r = 0; r <= repeat; r++) {
for (uint8_t section = 0; section < sections; section++) {
uint64_t section_data;
section_data = GETBITS64(data, section_bits * (sections - section - 1),
section_bits);
// Duplicate bytes in the data.
uint64_t expanded_data = 0;
for (uint8_t i = 0; i < sizeof(expanded_data); i++) {
const uint8_t first_byte = section_data >> 56;
for (uint8_t i = 0; i < 2; i++)
expanded_data = (expanded_data << 8) | first_byte;
section_data <<= 8;
}
// Two data blocks per section (i.e. 1 + a repeat)
sendGeneric(kPanasonicAc32HdrMark, kPanasonicAc32HdrSpace, // Header
kPanasonicAc32BitMark, kPanasonicAc32OneSpace, // Data
kPanasonicAc32BitMark, kPanasonicAc32ZeroSpace,
0, 0, // No Footer
expanded_data, section_bits * 2, kPanasonicFreq, false,
blocks - 1, // Repeat
50);
// Section Footer
sendGeneric(kPanasonicAc32HdrMark, kPanasonicAc32HdrSpace, // Header
0, 0, 0, 0, // No Data
kPanasonicAc32BitMark, kPanasonicAc32SectionGap, // Footer
data, 0, // No data (bits)
kPanasonicFreq, true, 0, 50);
}
}
}
#endif // SEND_PANASONIC_AC32
#if DECODE_PANASONIC_AC32
/// Decode the supplied Panasonic AC 32/16bit message.
/// Status: STABLE / Confirmed working.
/// @param[in,out] results Ptr to the data to decode & where to store the decode
/// result.
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// Typically: kPanasonicAc32Bits or kPanasonicAc32Bits/2
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return A boolean. True if it can decode it, false if it can't.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1307
/// @note Protocol has two known configurations:
/// (long)
/// Two sections of identical 32 bit data block pairs. ie. (32+32)+(32+32)=128
/// or
/// (short)
/// A single section of 3 x identical 32 bit data blocks i.e. (32+32+32)=96
/// Each data block also has a pair of 8 bits repeated identical bits.
/// e.g. (8+8)+(8+8)=32
///
/// So each long version really only has 32 unique bits, and the short version
/// really only has 16 unique bits.
bool IRrecv::decodePanasonicAC32(decode_results *results, uint16_t offset,
const uint16_t nbits, const bool strict) {
if (strict && (nbits != kPanasonicAc32Bits &&
nbits != kPanasonicAc32Bits / 2))
return false; // Not strictly a valid bit size.
// Determine if this is a long or a short message we are looking for.
const bool is_long = (nbits > kPanasonicAc32Bits / 2);
const uint16_t min_length = is_long ?
kPanasonicAc32Sections * kPanasonicAc32BlocksPerSection *
((2 * nbits) + kHeader + kFooter) - 1 + offset :
(kPanasonicAc32BlocksPerSection + 1) * ((4 * nbits) + kHeader) +
kFooter - 1 + offset;
if (results->rawlen < min_length)
return false; // Can't possibly be a valid message.
// Calculate the parameters for the decode based on it's length.
uint16_t sections;
uint16_t blocks_per_section;
if (is_long) {
sections = kPanasonicAc32Sections;
blocks_per_section = kPanasonicAc32BlocksPerSection;
} else {
sections = kPanasonicAc32Sections - 1;
blocks_per_section = kPanasonicAc32BlocksPerSection + 1;
}
const uint16_t bits_per_block = nbits / sections;
uint64_t data = 0;
uint64_t section_data = 0;
uint32_t prev_section_data;
// Match all the expected data blocks.
for (uint16_t block = 0;
block < sections * blocks_per_section;
block++) {
prev_section_data = section_data;
uint16_t used = matchGeneric(results->rawbuf + offset, &section_data,
results->rawlen - offset, bits_per_block * 2,
kPanasonicAc32HdrMark, kPanasonicAc32HdrSpace,
kPanasonicAc32BitMark, kPanasonicAc32OneSpace,
kPanasonicAc32BitMark, kPanasonicAc32ZeroSpace,
0, 0, // No Footer
false, kUseDefTol, kMarkExcess, false);
if (!used) return false;
offset += used;
// Is it the first block of the section?
if (block % blocks_per_section == 0) {
// The protocol repeats each byte twice, so to shrink the code we
// remove the duplicate bytes in the collected data. We only need to do
// this for the first block in a section.
uint64_t shrunk_data = 0;
uint64_t data_copy = section_data;
for (uint8_t i = 0; i < sizeof(data_copy); i += 2) {
const uint8_t first_byte = GETBITS64(data_copy,
(sizeof(data_copy) - 1) * 8, 8);
shrunk_data = (shrunk_data << 8) | first_byte;
// Compliance
if (strict) {
// Every second byte must be a duplicate of the previous.
const uint8_t next_byte = GETBITS64(data_copy,
(sizeof(data_copy) - 2) * 8, 8);
if (first_byte != next_byte) return false;
}
data_copy <<= 16;
}
// Keep the data from the first of the block in the section.
data = (data << bits_per_block) | shrunk_data;
} else { // Not the first block in a section.
// Compliance
if (strict)
// Compare the data from the blocks in pairs.
if (section_data != prev_section_data) return false;
// Look for the section footer at the end of the blocks.
if ((block + 1) % blocks_per_section == 0) {
uint64_t junk;
used = matchGeneric(results->rawbuf + offset, &junk,
results->rawlen - offset, 0,
// Header
kPanasonicAc32HdrMark, kPanasonicAc32HdrSpace,
// No Data
0, 0,
0, 0,
// Footer
kPanasonicAc32BitMark, kPanasonicAc32SectionGap,
true);
if (!used) return false;
offset += used;
}
}
}
// Success
results->value = data;
results->decode_type = decode_type_t::PANASONIC_AC32;
results->bits = nbits;
results->address = 0;
results->command = 0;
return true;
}
#endif // DECODE_PANASONIC_AC32
/// Class constructor
/// @param[in] pin GPIO to be used when sending.
/// @param[in] inverted Is the output signal to be inverted?
/// @param[in] use_modulation Is frequency modulation to be used?
IRPanasonicAc32::IRPanasonicAc32(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { stateReset(); }
#if SEND_PANASONIC_AC32
/// Send the current internal state as IR messages.
/// @param[in] repeat Nr. of times the message will be repeated.
void IRPanasonicAc32::send(const uint16_t repeat) {
_irsend.sendPanasonicAC32(getRaw(), kPanasonicAc32Bits, repeat);
}
#endif // SEND_PANASONIC_AC32
/// Set up hardware to be able to send a message.
void IRPanasonicAc32::begin(void) { _irsend.begin(); }
/// Get a copy of the internal state/code for this protocol.
/// @return The code for this protocol based on the current internal state.
uint32_t IRPanasonicAc32::getRaw(void) const { return _.raw; }
/// Set the internal state from a valid code for this protocol.
/// @param[in] state A valid code for this protocol.
void IRPanasonicAc32::setRaw(const uint32_t state) { _.raw = state; }
/// Reset the state of the remote to a known good state/sequence.
void IRPanasonicAc32::stateReset(void) { setRaw(kPanasonicAc32KnownGood); }
/// Set the Power Toggle setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRPanasonicAc32::setPowerToggle(const bool on) { _.PowerToggle = !on; }
/// Get the Power Toggle setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRPanasonicAc32::getPowerToggle(void) const { return !_.PowerToggle; }
/// Set the desired temperature.
/// @param[in] degrees The temperature in degrees celsius.
void IRPanasonicAc32::setTemp(const uint8_t degrees) {
uint8_t temp = std::max((uint8_t)kPanasonicAcMinTemp, degrees);
temp = std::min((uint8_t)kPanasonicAcMaxTemp, temp);
_.Temp = temp - (kPanasonicAcMinTemp - 1);
}
/// Get the current desired temperature setting.
/// @return The current setting for temp. in degrees celsius.
uint8_t IRPanasonicAc32::getTemp(void) const {
return _.Temp + (kPanasonicAcMinTemp - 1);
}
/// Get the operating mode setting of the A/C.
/// @return The current operating mode setting.
uint8_t IRPanasonicAc32::getMode(void) const { return _.Mode; }
/// Set the operating mode of the A/C.
/// @param[in] mode The desired operating mode.
/// @note If we get an unexpected mode, default to AUTO.
void IRPanasonicAc32::setMode(const uint8_t mode) {
switch (mode) {
case kPanasonicAc32Auto:
case kPanasonicAc32Cool:
case kPanasonicAc32Dry:
case kPanasonicAc32Heat:
case kPanasonicAc32Fan:
_.Mode = mode;
break;
default: _.Mode = kPanasonicAc32Auto;
}
}
/// Convert a stdAc::opmode_t enum into its native mode.
/// @param[in] mode The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRPanasonicAc32::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kPanasonicAc32Cool;
case stdAc::opmode_t::kHeat: return kPanasonicAc32Heat;
case stdAc::opmode_t::kDry: return kPanasonicAc32Dry;
case stdAc::opmode_t::kFan: return kPanasonicAc32Fan;
default: return kPanasonicAc32Auto;
}
}
/// Convert a native mode into its stdAc equivalent.
/// @param[in] mode The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::opmode_t IRPanasonicAc32::toCommonMode(const uint8_t mode) {
switch (mode) {
case kPanasonicAc32Cool: return stdAc::opmode_t::kCool;
case kPanasonicAc32Heat: return stdAc::opmode_t::kHeat;
case kPanasonicAc32Dry: return stdAc::opmode_t::kDry;
case kPanasonicAc32Fan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
/// Set the speed of the fan.
/// @param[in] speed The desired setting.
void IRPanasonicAc32::setFan(const uint8_t speed) {
switch (speed) {
case kPanasonicAc32FanMin:
case kPanasonicAc32FanLow:
case kPanasonicAc32FanMed:
case kPanasonicAc32FanHigh:
case kPanasonicAc32FanMax:
case kPanasonicAc32FanAuto:
_.Fan = speed;
break;
default: _.Fan = kPanasonicAc32FanAuto;
}
}
/// Get the current fan speed setting.
/// @return The current fan speed.
uint8_t IRPanasonicAc32::getFan(void) const { return _.Fan; }
/// Convert a native fan speed into its stdAc equivalent.
/// @param[in] spd The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::fanspeed_t IRPanasonicAc32::toCommonFanSpeed(const uint8_t spd) {
switch (spd) {
case kPanasonicAc32FanMax: return stdAc::fanspeed_t::kMax;
case kPanasonicAc32FanHigh: return stdAc::fanspeed_t::kHigh;
case kPanasonicAc32FanMed: return stdAc::fanspeed_t::kMedium;
case kPanasonicAc32FanLow: return stdAc::fanspeed_t::kLow;
case kPanasonicAc32FanMin: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
/// Convert a stdAc::fanspeed_t enum into it's native speed.
/// @param[in] speed The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRPanasonicAc32::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin: return kPanasonicAc32FanMin;
case stdAc::fanspeed_t::kLow: return kPanasonicAc32FanLow;
case stdAc::fanspeed_t::kMedium: return kPanasonicAc32FanMed;
case stdAc::fanspeed_t::kHigh: return kPanasonicAc32FanHigh;
case stdAc::fanspeed_t::kMax: return kPanasonicAc32FanMax;
default: return kPanasonicAc32FanAuto;
}
}
/// Get the current horizontal swing setting.
/// @return The current position it is set to.
bool IRPanasonicAc32::getSwingHorizontal(void) const { return _.SwingH; }
/// Control the horizontal swing setting.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRPanasonicAc32::setSwingHorizontal(const bool on) { _.SwingH = on; }
/// Get the current vertical swing setting.
/// @return The current position it is set to.
uint8_t IRPanasonicAc32::getSwingVertical(void) const { return _.SwingV; }
/// Control the vertical swing setting.
/// @param[in] pos The position to set the vertical swing to.
void IRPanasonicAc32::setSwingVertical(const uint8_t pos) {
uint8_t elevation = pos;
if (elevation != kPanasonicAc32SwingVAuto) {
elevation = std::max(elevation, kPanasonicAcSwingVHighest);
elevation = std::min(elevation, kPanasonicAcSwingVLowest);
}
_.SwingV = elevation;
}
/// Convert a native vertical swing postion to it's common equivalent.
/// @param[in] pos A native position to convert.
/// @return The common vertical swing position.
stdAc::swingv_t IRPanasonicAc32::toCommonSwingV(const uint8_t pos) {
return IRPanasonicAc::toCommonSwingV(pos);
}
/// Convert a standard A/C vertical swing into its native setting.
/// @param[in] position A stdAc::swingv_t position to convert.
/// @return The equivalent native horizontal swing position.
uint8_t IRPanasonicAc32::convertSwingV(const stdAc::swingv_t position) {
switch (position) {
case stdAc::swingv_t::kHighest:
case stdAc::swingv_t::kHigh:
case stdAc::swingv_t::kMiddle:
case stdAc::swingv_t::kLow:
case stdAc::swingv_t::kLowest: return (uint8_t)position;
default: return kPanasonicAc32SwingVAuto;
}
}
/// Convert the current internal state into a human readable string.
/// @return A human readable string.
String IRPanasonicAc32::toString(void) const {
String result = "";
result.reserve(110);
result += addBoolToString(getPowerToggle(), kPowerToggleStr, false);
result += addModeToString(_.Mode, kPanasonicAc32Auto, kPanasonicAc32Cool,
kPanasonicAc32Heat, kPanasonicAc32Dry,
kPanasonicAc32Fan);
result += addTempToString(getTemp());
result += addFanToString(_.Fan, kPanasonicAc32FanHigh, kPanasonicAc32FanLow,
kPanasonicAc32FanAuto, kPanasonicAc32FanMin,
kPanasonicAc32FanMed, kPanasonicAc32FanMax);
result += addBoolToString(_.SwingH, kSwingHStr);
result += addSwingVToString(getSwingVertical(),
kPanasonicAc32SwingVAuto,
kPanasonicAcSwingVHighest,
kPanasonicAcSwingVHigh,
kPanasonicAc32SwingVAuto, // Upper Middle unused
kPanasonicAcSwingVMiddle,
kPanasonicAc32SwingVAuto, // Lower Middle unused
kPanasonicAcSwingVLow,
kPanasonicAcSwingVLowest,
// Below are unused.
kPanasonicAc32SwingVAuto,
kPanasonicAc32SwingVAuto,
kPanasonicAc32SwingVAuto,
kPanasonicAc32SwingVAuto);
return result;
}
/// Convert the current internal state into its stdAc::state_t equivalent.
/// @param[in] prev Ptr to the previous state if required.
/// @return The stdAc equivalent of the native settings.
stdAc::state_t IRPanasonicAc32::toCommon(const stdAc::state_t *prev) const {
stdAc::state_t result;
// Start with the previous state if given it.
if (prev != NULL) {
result = *prev;
} else {
// Set defaults for non-zero values that are not implicitly set for when
// there is no previous state.
// e.g. Any setting that toggles should probably go here.
result.power = false;
}
result.protocol = decode_type_t::PANASONIC_AC32;
result.model = -1;
if (getPowerToggle()) result.power = !result.power;
result.mode = toCommonMode(getMode());
result.celsius = true;
result.degrees = getTemp();
result.fanspeed = toCommonFanSpeed(getFan());
result.swingv = toCommonSwingV(getSwingVertical());
result.swingh = getSwingHorizontal() ? stdAc::swingh_t::kAuto
: stdAc::swingh_t::kOff;
// Not supported.
result.quiet = false;
result.turbo = false;
result.filter = false;
result.econo = false;
result.clean = false;
result.light = false;
result.beep = false;
result.sleep = -1;
result.clock = -1;
return result;
}