Tasmota/lib/lib_basic/IRremoteESP8266/src/ir_Vestel.cpp
2021-03-25 08:40:27 +01:00

573 lines
18 KiB
C++

// Copyright 2018 Erdem U. Altinyurt
// Copyright 2019 David Conran
/// @file
/// @brief Support for Vestel protocols.
/// Vestel added by Erdem U. Altinyurt
#include "ir_Vestel.h"
#include <algorithm>
#ifndef UNIT_TEST
#include <Arduino.h>
#endif
#include "IRrecv.h"
#include "IRremoteESP8266.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
#include "ir_Haier.h"
// Ref:
// None. Totally reverse engineered.
using irutils::addBoolToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addTempToString;
using irutils::minsToString;
#if SEND_VESTEL_AC
/// Send a Vestel message
/// Status: STABLE / Working.
/// @param[in] data The message to be sent.
/// @param[in] nbits The number of bits of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
void IRsend::sendVestelAc(const uint64_t data, const uint16_t nbits,
const uint16_t repeat) {
if (nbits % 8 != 0) return; // nbits is required to be a multiple of 8.
sendGeneric(kVestelAcHdrMark, kVestelAcHdrSpace, // Header
kVestelAcBitMark, kVestelAcOneSpace, // Data
kVestelAcBitMark, kVestelAcZeroSpace, // Data
kVestelAcBitMark, 100000, // Footer + repeat gap
data, nbits, 38, false, repeat, 50);
}
#endif // SEND_VESTEL_AC
/// Class constructor
/// @param[in] pin GPIO to be used when sending.
/// @param[in] inverted Is the output signal to be inverted?
/// @param[in] use_modulation Is frequency modulation to be used?
IRVestelAc::IRVestelAc(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { stateReset(); }
/// Reset the state of the remote to a known good state/sequence.
/// @note Power On, Mode Auto, Fan Auto, Temp = 25C/77F
void IRVestelAc::stateReset(void) {
_.cmdState = kVestelAcStateDefault;
_.timeState = kVestelAcTimeStateDefault;
}
/// Set up hardware to be able to send a message.
void IRVestelAc::begin(void) { _irsend.begin(); }
#if SEND_VESTEL_AC
/// Send the current internal state as an IR message.
/// @param[in] repeat Nr. of times the message will be repeated.
void IRVestelAc::send(const uint16_t repeat) {
_irsend.sendVestelAc(getRaw(), kVestelAcBits, repeat);
}
#endif // SEND_VESTEL_AC
/// Get a copy of the internal state/code for this protocol.
/// @return A code for this protocol based on the current internal state.
uint64_t IRVestelAc::getRaw(void) {
checksum();
if (!_.UseCmd) return _.timeState;
return _.cmdState;
}
/// Set the internal state from a valid code for this protocol.
/// @param[in] newState A valid code for this protocol.
void IRVestelAc::setRaw(const uint8_t* newState) {
uint64_t upState = 0;
for (int i = 0; i < 7; i++)
upState |= static_cast<uint64_t>(newState[i]) << (i * 8);
setRaw(upState);
}
/// Set the internal state from a valid code for this protocol.
/// @param[in] newState A valid code for this protocol.
void IRVestelAc::setRaw(const uint64_t newState) {
_.cmdState = newState;
_.timeState = newState;
if (isTimeCommand()) {
_.cmdState = kVestelAcStateDefault;
_.UseCmd = false;
} else {
_.timeState = kVestelAcTimeStateDefault;
}
}
/// Set the requested power state of the A/C to on.
void IRVestelAc::on(void) { setPower(true); }
/// Set the requested power state of the A/C to off.
void IRVestelAc::off(void) { setPower(false); }
/// Change the power setting.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRVestelAc::setPower(const bool on) {
_.Power = (on ? 0b11 : 0b00);
_.UseCmd = true;
}
/// Get the value of the current power setting.
/// @return true, the setting is on. false, the setting is off.
bool IRVestelAc::getPower(void) const {
return _.Power;
}
/// Set the temperature.
/// @param[in] temp The temperature in degrees celsius.
void IRVestelAc::setTemp(const uint8_t temp) {
uint8_t new_temp = std::max(kVestelAcMinTempC, temp);
new_temp = std::min(kVestelAcMaxTemp, new_temp);
_.Temp = new_temp - kVestelAcMinTempH;
_.UseCmd = true;
}
/// Get the current temperature setting.
/// @return The current setting for temp. in degrees celsius.
uint8_t IRVestelAc::getTemp(void) const {
return _.Temp + kVestelAcMinTempH;
}
/// Set the speed of the fan.
/// @param[in] fan The desired setting.
void IRVestelAc::setFan(const uint8_t fan) {
switch (fan) {
case kVestelAcFanLow:
case kVestelAcFanMed:
case kVestelAcFanHigh:
case kVestelAcFanAutoCool:
case kVestelAcFanAutoHot:
case kVestelAcFanAuto:
_.Fan = fan;
break;
default:
_.Fan = kVestelAcFanAuto;
}
_.UseCmd = true;
}
/// Get the current fan speed setting.
/// @return The current fan speed/mode.
uint8_t IRVestelAc::getFan(void) const {
return _.Fan;
}
/// Get the operating mode setting of the A/C.
/// @return The current operating mode setting.
uint8_t IRVestelAc::getMode(void) const {
return _.Mode;
}
/// Set the operating mode of the A/C.
/// @param[in] mode The desired operating mode.
/// @note If we get an unexpected mode, default to AUTO.
void IRVestelAc::setMode(const uint8_t mode) {
switch (mode) {
case kVestelAcAuto:
case kVestelAcCool:
case kVestelAcHeat:
case kVestelAcDry:
case kVestelAcFan:
_.Mode = mode;
break;
default:
_.Mode = kVestelAcAuto;
}
_.UseCmd = true;
}
/// Set Auto mode/level of the A/C.
/// @param[in] autoLevel The auto mode/level setting.
void IRVestelAc::setAuto(const int8_t autoLevel) {
if (autoLevel < -2 || autoLevel > 2) return;
_.Mode = kVestelAcAuto;
_.Fan = (autoLevel < 0 ? kVestelAcFanAutoCool : kVestelAcFanAutoHot);
if (autoLevel == 2)
setTemp(30);
else if (autoLevel == 1)
setTemp(31);
else if (autoLevel == 0)
setTemp(25);
else if (autoLevel == -1)
setTemp(16);
else if (autoLevel == -2)
setTemp(17);
}
/// Set the timer to be active on the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRVestelAc::setTimerActive(const bool on) {
_.Timer = on;
_.UseCmd = false;
}
/// Get if the Timer is active on the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRVestelAc::isTimerActive(void) const {
return _.Timer;
}
/// Set Timer option of A/C.
/// @param[in] minutes Nr of minutes the timer is to be set for.
/// @note Valid arguments are 0, 0.5, 1, 2, 3 and 5 hours (in minutes).
/// 0 disables the timer.
void IRVestelAc::setTimer(const uint16_t minutes) {
// Clear both On & Off timers.
_.OnHours = 0;
_.OnTenMins = 0;
// Set the "Off" time with the nr of minutes before we turn off.
_.OffHours = minutes / 60;
_.OffTenMins = (minutes % 60) / 10;
setOffTimerActive(false);
// Yes. On Timer instead of Off timer active.
setOnTimerActive(minutes != 0);
setTimerActive(minutes != 0);
}
/// Get the Timer time of A/C.
/// @return The number of minutes of time on the timer.
uint16_t IRVestelAc::getTimer(void) const { return getOffTimer(); }
/// Set the A/C's internal clock.
/// @param[in] minutes The time expressed in nr. of minutes past midnight.
void IRVestelAc::setTime(const uint16_t minutes) {
_.Hours = minutes / 60;
_.Minutes = minutes % 60;
_.UseCmd = false;
}
/// Get the A/C's internal clock's time.
/// @return The time expressed in nr. of minutes past midnight.
uint16_t IRVestelAc::getTime(void) const {
return _.Hours * 60 + _.Minutes;
}
/// Set the On timer to be active on the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRVestelAc::setOnTimerActive(const bool on) {
_.OnTimer = on;
_.UseCmd = false;
}
/// Get if the On Timer is active on the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRVestelAc::isOnTimerActive(void) const {
return _.OnTimer;
}
/// Set the On timer time on the A/C.
/// @param[in] minutes Time in nr. of minutes.
void IRVestelAc::setOnTimer(const uint16_t minutes) {
setOnTimerActive(minutes);
_.OnHours = minutes / 60;
_.OnTenMins = (minutes % 60) / 10;
setTimerActive(false);
}
/// Get the A/C's On Timer time.
/// @return The time expressed in nr. of minutes.
uint16_t IRVestelAc::getOnTimer(void) const {
return _.OnHours * 60 + _.OnTenMins * 10;
}
/// Set the Off timer to be active on the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRVestelAc::setOffTimerActive(const bool on) {
_.OffTimer = on;
_.UseCmd = false;
}
/// Get if the Off Timer is active on the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRVestelAc::isOffTimerActive(void) const {
return _.OffTimer;
}
/// Set the Off timer time on the A/C.
/// @param[in] minutes Time in nr. of minutes.
void IRVestelAc::setOffTimer(const uint16_t minutes) {
setOffTimerActive(minutes);
_.OffHours = minutes / 60;
_.OffTenMins = (minutes % 60) / 10;
setTimerActive(false);
}
/// Get the A/C's Off Timer time.
/// @return The time expressed in nr. of minutes.
uint16_t IRVestelAc::getOffTimer(void) const {
return _.OffHours * 60 + _.OffTenMins * 10;
}
/// Set the Sleep setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRVestelAc::setSleep(const bool on) {
_.TurboSleep = (on ? kVestelAcSleep : kVestelAcNormal);
_.UseCmd = true;
}
/// Get the Sleep setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRVestelAc::getSleep(void) const {
return _.TurboSleep == kVestelAcSleep;
}
/// Set the Turbo setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRVestelAc::setTurbo(const bool on) {
_.TurboSleep = (on ? kVestelAcTurbo : kVestelAcNormal);
_.UseCmd = true;
}
/// Get the Turbo setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRVestelAc::getTurbo(void) const {
return _.TurboSleep == kVestelAcTurbo;
}
/// Set the Ion (Filter) setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRVestelAc::setIon(const bool on) {
_.Ion = on;
_.UseCmd = true;
}
/// Get the Ion (Filter) setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRVestelAc::getIon(void) const {
return _.Ion;
}
/// Set the Swing Roaming setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRVestelAc::setSwing(const bool on) {
_.Swing = (on ? kVestelAcSwing : 0xF);
_.UseCmd = true;
}
/// Get the Swing Roaming setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRVestelAc::getSwing(void) const {
return _.Swing == kVestelAcSwing;
}
/// Calculate the checksum for a given state.
/// @param[in] state The state to calc the checksum of.
/// @return The calculated checksum value.
uint8_t IRVestelAc::calcChecksum(const uint64_t state) {
// Just counts the set bits +1 on stream and take inverse after mask
return 0xFF - countBits(GETBITS64(state, 20, 44), 44, true, 2);
}
/// Verify the checksum is valid for a given state.
/// @param[in] state The state to verify the checksum of.
/// @return true, if the state has a valid checksum. Otherwise, false.
bool IRVestelAc::validChecksum(const uint64_t state) {
VestelProtocol vp;
vp.cmdState = state;
return vp.CmdSum == IRVestelAc::calcChecksum(state);
}
/// Calculate & set the checksum for the current internal state of the remote.
void IRVestelAc::checksum(void) {
// Stored the checksum value in the last byte.
_.CmdSum = calcChecksum(_.cmdState);
_.TimeSum = calcChecksum(_.timeState);
}
/// Is the current state a time command?
/// @return true, if the state is a time message. Otherwise, false.
bool IRVestelAc::isTimeCommand(void) const {
return !_.UseCmd;
}
/// Convert a stdAc::opmode_t enum into its native mode.
/// @param[in] mode The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRVestelAc::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kVestelAcCool;
case stdAc::opmode_t::kHeat: return kVestelAcHeat;
case stdAc::opmode_t::kDry: return kVestelAcDry;
case stdAc::opmode_t::kFan: return kVestelAcFan;
default: return kVestelAcAuto;
}
}
/// Convert a stdAc::fanspeed_t enum into it's native speed.
/// @param[in] speed The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRVestelAc::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin:
case stdAc::fanspeed_t::kLow: return kVestelAcFanLow;
case stdAc::fanspeed_t::kMedium: return kVestelAcFanMed;
case stdAc::fanspeed_t::kHigh:
case stdAc::fanspeed_t::kMax: return kVestelAcFanHigh;
default: return kVestelAcFanAuto;
}
}
/// Convert a native mode into its stdAc equivalent.
/// @param[in] mode The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::opmode_t IRVestelAc::toCommonMode(const uint8_t mode) {
switch (mode) {
case kVestelAcCool: return stdAc::opmode_t::kCool;
case kVestelAcHeat: return stdAc::opmode_t::kHeat;
case kVestelAcDry: return stdAc::opmode_t::kDry;
case kVestelAcFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
/// Convert a native fan speed into its stdAc equivalent.
/// @param[in] spd The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::fanspeed_t IRVestelAc::toCommonFanSpeed(const uint8_t spd) {
switch (spd) {
case kVestelAcFanHigh: return stdAc::fanspeed_t::kMax;
case kVestelAcFanMed: return stdAc::fanspeed_t::kMedium;
case kVestelAcFanLow: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
/// Convert the current internal state into its stdAc::state_t equivalent.
/// @return The stdAc equivalent of the native settings.
stdAc::state_t IRVestelAc::toCommon(void) const {
stdAc::state_t result;
result.protocol = decode_type_t::VESTEL_AC;
result.model = -1; // Not supported.
result.power = _.Power;
result.mode = toCommonMode(_.Mode);
result.celsius = true;
result.degrees = getTemp();
result.fanspeed = toCommonFanSpeed(_.Fan);
result.swingv = (getSwing() ? stdAc::swingv_t::kAuto
: stdAc::swingv_t::kOff);
result.turbo = getTurbo();
result.filter = _.Ion;
result.sleep = (getSleep() ? 0 : -1);
// Not supported.
result.swingh = stdAc::swingh_t::kOff;
result.light = false;
result.econo = false;
result.quiet = false;
result.clean = false;
result.beep = false;
result.clock = -1;
return result;
}
/// Convert the current internal state into a human readable string.
/// @return A human readable string.
String IRVestelAc::toString(void) const {
String result = "";
result.reserve(100); // Reserve some heap for the string to reduce fragging.
if (isTimeCommand()) {
result += addLabeledString(minsToString(getTime()), kClockStr, false);
result += addLabeledString(
(_.Timer ? minsToString(getTimer()) : kOffStr),
kTimerStr);
result += addLabeledString(
(_.OnTimer && !_.Timer) ? minsToString(getOnTimer()) : kOffStr,
kOnTimerStr);
result += addLabeledString(
(_.OffTimer ? minsToString(getOffTimer()) : kOffStr),
kOffTimerStr);
return result;
}
// Not a time command, it's a normal command.
result += addBoolToString(_.Power, kPowerStr, false);
result += addModeToString(_.Mode, kVestelAcAuto, kVestelAcCool,
kVestelAcHeat, kVestelAcDry, kVestelAcFan);
result += addTempToString(getTemp());
result += addIntToString(_.Fan, kFanStr);
result += kSpaceLBraceStr;
switch (_.Fan) {
case kVestelAcFanAuto:
result += kAutoStr;
break;
case kVestelAcFanLow:
result += kLowStr;
break;
case kVestelAcFanMed:
result += kMedStr;
break;
case kVestelAcFanHigh:
result += kHighStr;
break;
case kVestelAcFanAutoCool:
result += kAutoStr;
result += ' ';
result += kCoolStr;
break;
case kVestelAcFanAutoHot:
result += kAutoStr;
result += ' ';
result += kHeatStr;
break;
default:
result += kUnknownStr;
}
result += ')';
result += addBoolToString(getSleep(), kSleepStr);
result += addBoolToString(getTurbo(), kTurboStr);
result += addBoolToString(_.Ion, kIonStr);
result += addBoolToString(getSwing(), kSwingStr);
return result;
}
#if DECODE_VESTEL_AC
/// Decode the supplied Vestel message.
/// Status: Alpha / Needs testing against a real device.
/// @param[in,out] results Ptr to the data to decode & where to store the result
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return True if it can decode it, false if it can't.
bool IRrecv::decodeVestelAc(decode_results* results, uint16_t offset,
const uint16_t nbits, const bool strict) {
if (nbits % 8 != 0) // nbits has to be a multiple of nr. of bits in a byte.
return false;
if (strict)
if (nbits != kVestelAcBits)
return false; // Not strictly a Vestel AC message.
uint64_t data = 0;
if (nbits > sizeof(data) * 8)
return false; // We can't possibly capture a Vestel packet that big.
// Match Header + Data + Footer
if (!matchGeneric(results->rawbuf + offset, &data,
results->rawlen - offset, nbits,
kVestelAcHdrMark, kVestelAcHdrSpace,
kVestelAcBitMark, kVestelAcOneSpace,
kVestelAcBitMark, kVestelAcZeroSpace,
kVestelAcBitMark, 0, false,
kVestelAcTolerance, kMarkExcess, false)) return false;
// Compliance
if (strict)
if (!IRVestelAc::validChecksum(data)) return false;
// Success
results->decode_type = VESTEL_AC;
results->bits = nbits;
results->value = data;
results->address = 0;
results->command = 0;
return true;
}
#endif // DECODE_VESTEL_AC