Tasmota/lib/lib_basic/IRremoteESP8266-2.7.15/src/ir_Lutron.cpp
2021-02-13 14:51:52 +01:00

144 lines
5.4 KiB
C++

// Copyright 2018 David Conran
/// @file
/// @brief Support for Lutron protocols.
/// @note The Lutron protocol uses a sort of Run Length encoding to encode
/// its data. There is no header or footer per-se.
/// As a mark is the first data we will notice, we always assume the First
/// bit of the technically 36-bit protocol is '1'. So it is assumed, and thus
/// we only care about the 35 bits of data.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/515
/// @see http://www.lutron.com/TechnicalDocumentLibrary/048158.doc
// Supports:
// Brand: Lutron, Model: SP-HT remote
// Brand: Lutron, Model: MIR-ITFS remote
// Brand: Lutron, Model: MIR-ITFS-LF remote
// Brand: Lutron, Model: MIR-ITFS-F remote
#define __STDC_LIMIT_MACROS
#include <stdint.h>
#include <algorithm>
#include "IRrecv.h"
#include "IRsend.h"
#include "IRutils.h"
// Constants
const uint16_t kLutronTick = 2288;
const uint32_t kLutronGap = 150000; // Completely made up value.
const uint16_t kLutronDelta = 400; // +/- 300 usecs.
#if SEND_LUTRON
/// Send a Lutron formatted message.
/// Status: Stable / Appears to be working for real devices.
/// @param[in] data The message to be sent.
/// @param[in] nbits The number of bits of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
/// @note The protocol is really 36 bits long, but the first bit is always a 1.
/// So, assume the 1 and only have a normal payload of 35 bits.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/515
void IRsend::sendLutron(uint64_t data, uint16_t nbits, uint16_t repeat) {
enableIROut(40000, 40); // 40Khz & 40% dutycycle.
for (uint16_t r = 0; r <= repeat; r++) {
mark(kLutronTick); // 1st bit is always '1'.
// Send the supplied data in MSB First order.
for (uint64_t mask = 1ULL << (nbits - 1); mask; mask >>= 1)
if (data & mask)
mark(kLutronTick); // Send a 1
else
space(kLutronTick); // Send a 0
space(kLutronGap); // Inter-message gap.
}
}
#endif // SEND_LUTRON
#if DECODE_LUTRON
/// Decode the supplied Lutron message.
/// Status: STABLE / Working.
/// @param[in,out] results Ptr to the data to decode & where to store the result
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return True if it can decode it, false if it can't.
bool IRrecv::decodeLutron(decode_results *results, uint16_t offset,
const uint16_t nbits, const bool strict) {
// Technically the smallest number of entries for the smallest message is '1'.
// i.e. All the bits set to 1, would produce a single huge mark signal.
// So no minimum length check is required.
if (strict && nbits != kLutronBits)
return false; // Not strictly an Lutron message.
uint64_t data = 0;
int16_t bitsSoFar = -1;
if (nbits > sizeof(data) * 8) return false; // To large to store the data.
for (; bitsSoFar < nbits && offset < results->rawlen; offset++) {
uint16_t entry = results->rawbuf[offset];
// It has to be large enough to qualify as a bit.
if (!matchAtLeast(entry, kLutronTick, 0, kLutronDelta)) {
DPRINTLN("Entry too small. Aborting.");
return false;
}
// Keep reading bits of the same value until we run out.
while (entry != 0 && matchAtLeast(entry, kLutronTick, 0, kLutronDelta)) {
bitsSoFar++;
DPRINT("Bit: ");
DPRINT(bitsSoFar);
if (offset % 2) { // Is Odd?
data = (data << 1) + 1; // Append a '1'.
DPRINTLN(" is a 1.");
} else { // Is it Even?
data <<= 1; // Append a '0'.
DPRINTLN(" is a 0.");
if (bitsSoFar == nbits && matchAtLeast(entry, kLutronGap))
break; // We've likely reached the end of a message.
}
// Remove a bit length from the current entry.
entry = std::max(entry, (uint16_t)(kLutronTick / kRawTick)) -
kLutronTick / kRawTick;
}
if (offset % 2 && !match(entry, kLutronDelta, 0, kLutronDelta)) {
DPRINT("offset = ");
DPRINTLN(offset);
DPRINT("rawlen = ");
DPRINTLN(results->rawlen);
DPRINT("entry = ");
DPRINTLN(entry);
DPRINTLN("Odd Entry has too much left over. Aborting.");
return false; // Too much left over to be a good value. Reject it.
}
if (offset % 2 == 0 && offset <= results->rawlen - 1 &&
!matchAtLeast(entry, kLutronDelta, 0, kLutronDelta)) {
DPRINT("offset = ");
DPRINTLN(offset);
DPRINT("rawlen = ");
DPRINTLN(results->rawlen);
DPRINT("entry = ");
DPRINTLN(entry);
DPRINTLN("Entry has too much left over. Aborting.");
return false; // Too much left over to be a good value. Reject it.
}
}
// We got too many bits.
if (bitsSoFar > nbits || bitsSoFar < 0) {
DPRINTLN("Wrong number of bits found. Aborting.");
return false;
}
// If we got less bits than we were expecting, we need to pad with zeros
// until we get the correct number of bits.
if (bitsSoFar < nbits) data <<= (nbits - bitsSoFar);
// Success
DPRINTLN("Lutron Success!");
results->decode_type = LUTRON;
results->bits = bitsSoFar;
results->value = data ^ (1ULL << nbits); // Mask off the initial '1'.
results->address = 0;
results->command = 0;
return true;
}
#endif // DECODE_LUTRON