Tasmota/lib/IRremoteESP8266-2.7.4/src/ir_Kelvinator.cpp

492 lines
18 KiB
C++

// Copyright 2016 David Conran
//
// Code to emulate IR Kelvinator YALIF remote control unit, which should control
// at least the following Kelvinator A/C units:
// KSV26CRC, KSV26HRC, KSV35CRC, KSV35HRC, KSV53HRC, KSV62HRC, KSV70CRC,
// KSV70HRC, KSV80HRC.
//
// Note:
// * Unsupported:
// - All Sleep modes.
// - All Timer modes.
// - "I Feel" button & mode.
// - Energy Saving mode.
// - Low Heat mode.
// - Fahrenheit.
#include "ir_Kelvinator.h"
#include <algorithm>
#include <cstring>
#ifndef ARDUINO
#include <string>
#endif
#include "IRac.h"
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
// Constants
const uint16_t kKelvinatorTick = 85;
const uint16_t kKelvinatorHdrMarkTicks = 106;
const uint16_t kKelvinatorHdrMark = kKelvinatorHdrMarkTicks * kKelvinatorTick;
const uint16_t kKelvinatorHdrSpaceTicks = 53;
const uint16_t kKelvinatorHdrSpace = kKelvinatorHdrSpaceTicks * kKelvinatorTick;
const uint16_t kKelvinatorBitMarkTicks = 8;
const uint16_t kKelvinatorBitMark = kKelvinatorBitMarkTicks * kKelvinatorTick;
const uint16_t kKelvinatorOneSpaceTicks = 18;
const uint16_t kKelvinatorOneSpace = kKelvinatorOneSpaceTicks * kKelvinatorTick;
const uint16_t kKelvinatorZeroSpaceTicks = 6;
const uint16_t kKelvinatorZeroSpace =
kKelvinatorZeroSpaceTicks * kKelvinatorTick;
const uint16_t kKelvinatorGapSpaceTicks = 235;
const uint16_t kKelvinatorGapSpace = kKelvinatorGapSpaceTicks * kKelvinatorTick;
const uint8_t kKelvinatorCmdFooter = 2;
const uint8_t kKelvinatorCmdFooterBits = 3;
const uint8_t kKelvinatorModeOffset = 0; // Mask 0b111
const uint8_t kKelvinatorPowerOffset = 3;
const uint8_t kKelvinatorFanOffset = 4; // Mask 0b111
const uint8_t kKelvinatorFanSize = 3; // Bits
const uint8_t kKelvinatorBasicFanSize = 2; // Bits, Mask 0b011
const uint8_t kKelvinatorChecksumStart = 10;
const uint8_t kKelvinatorVentSwingOffset = 6;
const uint8_t kKelvinatorVentSwingVOffset = 0;
const uint8_t kKelvinatorVentSwingHOffset = 4;
const uint8_t kKelvinatorQuietOffset = 7;
const uint8_t kKelvinatorIonFilterOffset = 6;
const uint8_t kKelvinatorLightOffset = 5;
const uint8_t kKelvinatorXfanOffset = 7;
const uint8_t kKelvinatorTurboOffset = 4;
using irutils::addBoolToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addFanToString;
using irutils::addTempToString;
using irutils::setBit;
using irutils::setBits;
#if SEND_KELVINATOR
// Send a Kelvinator A/C message.
//
// Args:
// data: An array of bytes containing the IR command.
// nbytes: Nr. of bytes of data in the array. (>=kKelvinatorStateLength)
// repeat: Nr. of times the message is to be repeated. (Default = 0).
//
// Status: STABLE / Known working.
//
void IRsend::sendKelvinator(const unsigned char data[], const uint16_t nbytes,
const uint16_t repeat) {
if (nbytes < kKelvinatorStateLength)
return; // Not enough bytes to send a proper message.
for (uint16_t r = 0; r <= repeat; r++) {
// Command Block #1 (4 bytes)
sendGeneric(kKelvinatorHdrMark, kKelvinatorHdrSpace, kKelvinatorBitMark,
kKelvinatorOneSpace, kKelvinatorBitMark, kKelvinatorZeroSpace,
0, 0, // No Footer yet.
data, 4, 38, false, 0, 50);
// Send Footer for the command block (3 bits (b010))
sendGeneric(0, 0, // No Header
kKelvinatorBitMark, kKelvinatorOneSpace, kKelvinatorBitMark,
kKelvinatorZeroSpace, kKelvinatorBitMark, kKelvinatorGapSpace,
kKelvinatorCmdFooter, kKelvinatorCmdFooterBits, 38, false, 0,
50);
// Data Block #1 (4 bytes)
sendGeneric(0, 0, // No header
kKelvinatorBitMark, kKelvinatorOneSpace, kKelvinatorBitMark,
kKelvinatorZeroSpace, kKelvinatorBitMark,
kKelvinatorGapSpace * 2, data + 4, 4, 38, false, 0, 50);
// Command Block #2 (4 bytes)
sendGeneric(kKelvinatorHdrMark, kKelvinatorHdrSpace, kKelvinatorBitMark,
kKelvinatorOneSpace, kKelvinatorBitMark, kKelvinatorZeroSpace,
0, 0, // No Footer yet.
data + 8, 4, 38, false, 0, 50);
// Send Footer for the command block (3 bits (B010))
sendGeneric(0, 0, // No Header
kKelvinatorBitMark, kKelvinatorOneSpace, kKelvinatorBitMark,
kKelvinatorZeroSpace, kKelvinatorBitMark, kKelvinatorGapSpace,
kKelvinatorCmdFooter, kKelvinatorCmdFooterBits, 38, false, 0,
50);
// Data Block #2 (4 bytes)
sendGeneric(0, 0, // No header
kKelvinatorBitMark, kKelvinatorOneSpace, kKelvinatorBitMark,
kKelvinatorZeroSpace, kKelvinatorBitMark,
kKelvinatorGapSpace * 2, data + 12, 4, 38, false, 0, 50);
}
}
#endif // SEND_KELVINATOR
IRKelvinatorAC::IRKelvinatorAC(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { this->stateReset(); }
void IRKelvinatorAC::stateReset(void) {
for (uint8_t i = 0; i < kKelvinatorStateLength; i++) remote_state[i] = 0x0;
remote_state[3] = 0x50;
remote_state[11] = 0x70;
}
void IRKelvinatorAC::begin(void) { _irsend.begin(); }
void IRKelvinatorAC::fixup(void) {
// X-Fan mode is only valid in COOL or DRY modes.
if (this->getMode() != kKelvinatorCool && this->getMode() != kKelvinatorDry)
this->setXFan(false);
this->checksum(); // Calculate the checksums
}
#if SEND_KELVINATOR
void IRKelvinatorAC::send(const uint16_t repeat) {
this->fixup(); // Ensure correct settings before sending.
_irsend.sendKelvinator(remote_state, kKelvinatorStateLength, repeat);
}
#endif // SEND_KELVINATOR
uint8_t *IRKelvinatorAC::getRaw(void) {
this->fixup(); // Ensure correct settings before sending.
return remote_state;
}
void IRKelvinatorAC::setRaw(const uint8_t new_code[]) {
memcpy(remote_state, new_code, kKelvinatorStateLength);
}
uint8_t IRKelvinatorAC::calcBlockChecksum(const uint8_t *block,
const uint16_t length) {
uint8_t sum = kKelvinatorChecksumStart;
// Sum the lower half of the first 4 bytes of this block.
for (uint8_t i = 0; i < 4 && i < length - 1; i++, block++)
sum += (*block & 0b1111);
// then sum the upper half of the next 3 bytes.
for (uint8_t i = 4; i < length - 1; i++, block++) sum += (*block >> 4);
// Trim it down to fit into the 4 bits allowed. i.e. Mod 16.
return sum & 0b1111;
}
// Many Bothans died to bring us this information.
void IRKelvinatorAC::checksum(const uint16_t length) {
// For each command + options block.
for (uint16_t offset = 0; offset + 7 < length; offset += 8) {
setBits(&remote_state[7 + offset], kHighNibble, kNibbleSize,
calcBlockChecksum(remote_state + offset));
}
}
// Verify the checksum is valid for a given state.
// Args:
// state: The array to verify the checksum of.
// length: The size of the state.
// Returns:
// A boolean.
bool IRKelvinatorAC::validChecksum(const uint8_t state[],
const uint16_t length) {
for (uint16_t offset = 0; offset + 7 < length; offset += 8) {
// Top 4 bits of the last byte in the block is the block's checksum.
if (GETBITS8(state[offset + 7], kHighNibble, kNibbleSize) !=
calcBlockChecksum(state + offset))
return false;
}
return true;
}
void IRKelvinatorAC::on(void) { setPower(true); }
void IRKelvinatorAC::off(void) {setPower(false); }
void IRKelvinatorAC::setPower(const bool on) {
setBit(&remote_state[0], kKelvinatorPowerOffset, on);
remote_state[8] = remote_state[0]; // Duplicate to the 2nd command chunk.
}
bool IRKelvinatorAC::getPower(void) {
return GETBIT8(remote_state[0], kKelvinatorPowerOffset);
}
// Set the temp. in deg C
void IRKelvinatorAC::setTemp(const uint8_t degrees) {
uint8_t temp = std::max(kKelvinatorMinTemp, degrees);
temp = std::min(kKelvinatorMaxTemp, temp);
setBits(&remote_state[1], kLowNibble, kNibbleSize, temp - kKelvinatorMinTemp);
remote_state[9] = remote_state[1]; // Duplicate to the 2nd command chunk.
}
// Return the set temp. in deg C
uint8_t IRKelvinatorAC::getTemp(void) {
return GETBITS8(remote_state[1], kLowNibble, kNibbleSize) +
kKelvinatorMinTemp;
}
// Set the speed of the fan, 0-5, 0 is auto, 1-5 is the speed
void IRKelvinatorAC::setFan(const uint8_t speed) {
uint8_t fan = std::min(kKelvinatorFanMax, speed); // Bounds check
// Only change things if we need to.
if (fan != this->getFan()) {
// Set the basic fan values.
setBits(&remote_state[0], kKelvinatorFanOffset, kKelvinatorBasicFanSize,
std::min(kKelvinatorBasicFanMax, fan));
remote_state[8] = remote_state[0]; // Duplicate to the 2nd command chunk.
// Set the advanced(?) fan value.
setBits(&remote_state[14], kKelvinatorFanOffset, kKelvinatorFanSize, fan);
// Turbo mode is turned off if we change the fan settings.
this->setTurbo(false);
}
}
uint8_t IRKelvinatorAC::getFan(void) {
return GETBITS8(remote_state[14], kKelvinatorFanOffset, kKelvinatorFanSize);
}
uint8_t IRKelvinatorAC::getMode(void) {
return GETBITS8(remote_state[0], kKelvinatorModeOffset, kModeBitsSize);
}
void IRKelvinatorAC::setMode(const uint8_t mode) {
switch (mode) {
case kKelvinatorAuto:
case kKelvinatorDry:
// When the remote is set to Auto or Dry, it defaults to 25C and doesn't
// show it.
this->setTemp(kKelvinatorAutoTemp);
// FALL-THRU
case kKelvinatorHeat:
case kKelvinatorCool:
case kKelvinatorFan:
setBits(&remote_state[0], kKelvinatorModeOffset, kModeBitsSize, mode);
remote_state[8] = remote_state[0]; // Duplicate to the 2nd command chunk.
break;
default: // If we get an unexpected mode, default to AUTO.
this->setMode(kKelvinatorAuto);
}
}
void IRKelvinatorAC::setSwingVertical(const bool on) {
setBit(&remote_state[4], kKelvinatorVentSwingVOffset, on);
setBit(&remote_state[0], kKelvinatorVentSwingOffset,
on || getSwingHorizontal());
remote_state[8] = remote_state[0]; // Duplicate to the 2nd command chunk.
}
bool IRKelvinatorAC::getSwingVertical(void) {
return GETBIT8(remote_state[4], kKelvinatorVentSwingVOffset);
}
void IRKelvinatorAC::setSwingHorizontal(const bool on) {
setBit(&remote_state[4], kKelvinatorVentSwingHOffset, on);
setBit(&remote_state[0], kKelvinatorVentSwingOffset,
on || getSwingVertical());
remote_state[8] = remote_state[0]; // Duplicate to the 2nd command chunk.
}
bool IRKelvinatorAC::getSwingHorizontal(void) {
return GETBIT8(remote_state[4], kKelvinatorVentSwingHOffset);
}
void IRKelvinatorAC::setQuiet(const bool on) {
setBit(&remote_state[12], kKelvinatorQuietOffset, on);
}
bool IRKelvinatorAC::getQuiet(void) {
return GETBIT8(remote_state[12], kKelvinatorQuietOffset);
}
void IRKelvinatorAC::setIonFilter(const bool on) {
setBit(&remote_state[2], kKelvinatorIonFilterOffset, on);
remote_state[10] = remote_state[2]; // Duplicate to the 2nd command chunk.
}
bool IRKelvinatorAC::getIonFilter(void) {
return GETBIT8(remote_state[2], kKelvinatorIonFilterOffset);
}
void IRKelvinatorAC::setLight(const bool on) {
setBit(&remote_state[2], kKelvinatorLightOffset, on);
remote_state[10] = remote_state[2]; // Duplicate to the 2nd command chunk.
}
bool IRKelvinatorAC::getLight(void) {
return GETBIT8(remote_state[2], kKelvinatorLightOffset);
}
// Note: XFan mode is only valid in Cool or Dry mode.
void IRKelvinatorAC::setXFan(const bool on) {
setBit(&remote_state[2], kKelvinatorXfanOffset, on);
remote_state[10] = remote_state[2]; // Duplicate to the 2nd command chunk.
}
bool IRKelvinatorAC::getXFan(void) {
return GETBIT8(remote_state[2], kKelvinatorXfanOffset);
}
// Note: Turbo mode is turned off if the fan speed is changed.
void IRKelvinatorAC::setTurbo(const bool on) {
setBit(&remote_state[2], kKelvinatorTurboOffset, on);
remote_state[10] = remote_state[2]; // Duplicate to the 2nd command chunk.
}
bool IRKelvinatorAC::getTurbo(void) {
return GETBIT8(remote_state[2], kKelvinatorTurboOffset);
}
// Convert a standard A/C mode into its native mode.
uint8_t IRKelvinatorAC::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kKelvinatorCool;
case stdAc::opmode_t::kHeat: return kKelvinatorHeat;
case stdAc::opmode_t::kDry: return kKelvinatorDry;
case stdAc::opmode_t::kFan: return kKelvinatorFan;
default: return kKelvinatorAuto;
}
}
// Convert a native mode to it's common equivalent.
stdAc::opmode_t IRKelvinatorAC::toCommonMode(const uint8_t mode) {
switch (mode) {
case kKelvinatorCool: return stdAc::opmode_t::kCool;
case kKelvinatorHeat: return stdAc::opmode_t::kHeat;
case kKelvinatorDry: return stdAc::opmode_t::kDry;
case kKelvinatorFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
// Convert a native fan speed to it's common equivalent.
stdAc::fanspeed_t IRKelvinatorAC::toCommonFanSpeed(const uint8_t speed) {
return (stdAc::fanspeed_t)speed;
}
// Convert the A/C state to it's common equivalent.
stdAc::state_t IRKelvinatorAC::toCommon(void) {
stdAc::state_t result;
result.protocol = decode_type_t::KELVINATOR;
result.model = -1; // Unused.
result.power = this->getPower();
result.mode = this->toCommonMode(this->getMode());
result.celsius = true;
result.degrees = this->getTemp();
result.fanspeed = this->toCommonFanSpeed(this->getFan());
result.swingv = this->getSwingVertical() ? stdAc::swingv_t::kAuto :
stdAc::swingv_t::kOff;
result.swingh = this->getSwingHorizontal() ? stdAc::swingh_t::kAuto :
stdAc::swingh_t::kOff;
result.quiet = this->getQuiet();
result.turbo = this->getTurbo();
result.light = this->getLight();
result.filter = this->getIonFilter();
result.clean = this->getXFan();
// Not supported.
result.econo = false;
result.beep = false;
result.sleep = -1;
result.clock = -1;
return result;
}
// Convert the internal state into a human readable string.
String IRKelvinatorAC::toString(void) {
String result = "";
result.reserve(160); // Reserve some heap for the string to reduce fragging.
result += addBoolToString(getPower(), kPowerStr, false);
result += addModeToString(getMode(), kKelvinatorAuto, kKelvinatorCool,
kKelvinatorHeat, kKelvinatorDry, kKelvinatorFan);
result += addTempToString(getTemp());
result += addFanToString(getFan(), kKelvinatorFanMax, kKelvinatorFanMin,
kKelvinatorFanAuto, kKelvinatorFanAuto,
kKelvinatorBasicFanMax);
result += addBoolToString(getTurbo(), kTurboStr);
result += addBoolToString(getQuiet(), kQuietStr);
result += addBoolToString(getXFan(), kXFanStr);
result += addBoolToString(getIonFilter(), kIonStr);
result += addBoolToString(getLight(), kLightStr);
result += addBoolToString(getSwingHorizontal(), kSwingHStr);
result += addBoolToString(getSwingVertical(), kSwingVStr);
return result;
}
#if DECODE_KELVINATOR
// Decode the supplied Kelvinator message.
//
// Args:
// results: Ptr to the data to decode and where to store the decode result.
// offset: The starting index to use when attempting to decode the raw data.
// Typically/Defaults to kStartOffset.
// nbits: The number of data bits to expect. Typically kKelvinatorBits.
// strict: Flag indicating if we should perform strict matching.
// Returns:
// boolean: True if it can decode it, false if it can't.
//
// Status: STABLE / Known working.
bool IRrecv::decodeKelvinator(decode_results *results, uint16_t offset,
const uint16_t nbits, const bool strict) {
if (results->rawlen <=
2 * (nbits + kKelvinatorCmdFooterBits) + (kHeader + kFooter + 1) * 2 - 1 +
offset)
return false; // Can't possibly be a valid Kelvinator message.
if (strict && nbits != kKelvinatorBits)
return false; // Not strictly a Kelvinator message.
// There are two messages back-to-back in a full Kelvinator IR message
// sequence.
int8_t pos = 0;
for (uint8_t s = 0; s < 2; s++) {
match_result_t data_result;
uint16_t used;
// Header + Data Block #1 (32 bits)
used = matchGeneric(results->rawbuf + offset, results->state + pos,
results->rawlen - offset, 32,
kKelvinatorHdrMark, kKelvinatorHdrSpace,
kKelvinatorBitMark, kKelvinatorOneSpace,
kKelvinatorBitMark, kKelvinatorZeroSpace,
0, 0, false,
_tolerance, kMarkExcess, false);
if (used == 0) return false;
offset += used;
pos += 4;
// Command data footer (3 bits, B010)
data_result = matchData(
&(results->rawbuf[offset]), kKelvinatorCmdFooterBits,
kKelvinatorBitMark, kKelvinatorOneSpace,
kKelvinatorBitMark, kKelvinatorZeroSpace,
_tolerance, kMarkExcess, false);
if (data_result.success == false) return false;
if (data_result.data != kKelvinatorCmdFooter) return false;
offset += data_result.used;
// Gap + Data (Options) (32 bits)
used = matchGeneric(results->rawbuf + offset, results->state + pos,
results->rawlen - offset, 32,
kKelvinatorBitMark, kKelvinatorGapSpace,
kKelvinatorBitMark, kKelvinatorOneSpace,
kKelvinatorBitMark, kKelvinatorZeroSpace,
kKelvinatorBitMark, kKelvinatorGapSpace * 2,
s > 0,
_tolerance, kMarkExcess, false);
if (used == 0) return false;
offset += used;
pos += 4;
}
// Compliance
if (strict) {
// Verify the message's checksum is correct.
if (!IRKelvinatorAC::validChecksum(results->state)) return false;
}
// Success
results->decode_type = decode_type_t::KELVINATOR;
results->bits = nbits;
// No need to record the state as we stored it as we decoded it.
// As we use result->state, we don't record value, address, or command as it
// is a union data type.
return true;
}
#endif // DECODE_KELVINATOR