Tasmota/lib/lib_basic/IRremoteESP8266/src/ir_Transcold.cpp
2021-03-25 08:40:27 +01:00

507 lines
16 KiB
C++

// Copyright 2020 Chandrashekar Shetty (iamDshetty)
// Copyright 2020 crankyoldgit
// Copyright 2021 siriuslzx
/// @file
/// @brief Support for Transcold A/C protocols.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1256
#include "ir_Transcold.h"
#include <algorithm>
#ifndef ARDUINO
#include <string>
#endif
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
// Constants
const uint16_t kTranscoldHdrMark = 5944; ///< uSeconds.
const uint16_t kTranscoldBitMark = 555; ///< uSeconds.
const uint16_t kTranscoldHdrSpace = 7563; ///< uSeconds.
const uint16_t kTranscoldOneSpace = 3556; ///< uSeconds.
const uint16_t kTranscoldZeroSpace = 1526; ///< uSeconds.
using irutils::addBoolToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addTempToString;
#if SEND_TRANSCOLD
/// Send a Transcold message
/// Status: STABLE / Confirmed Working.
/// @param[in] data The message to be sent.
/// @param[in] nbits The number of bits of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
void IRsend::sendTranscold(uint64_t data, uint16_t nbits, uint16_t repeat) {
if (nbits % 8 != 0) return; // nbits is required to be a multiple of 8.
// Set IR carrier frequency
enableIROut(38);
for (uint16_t r = 0; r <= repeat; r++) {
// Header
mark(kTranscoldHdrMark);
space(kTranscoldHdrSpace);
// Data
// Break data into byte segments, starting at the Most Significant
// Byte. Each byte then being sent normal, then followed inverted.
for (uint16_t i = 8; i <= nbits; i += 8) {
// Grab a bytes worth of data.
// uint8_t segment = (data >> (nbits - i)) & 0xFF;
uint8_t segment = GETBITS64(data, nbits - i, 8);
// Normal + Inverted
uint16_t both = (segment << 8) | (~segment & 0xFF);
sendData(kTranscoldBitMark, kTranscoldOneSpace, kTranscoldBitMark,
kTranscoldZeroSpace, both, 16, true);
}
// Footer
mark(kTranscoldBitMark);
space(kTranscoldHdrSpace);
mark(kTranscoldBitMark);
space(kDefaultMessageGap);
}
}
#endif // SEND_TRANSCOLD
/// Class constructor.
/// @param[in] pin GPIO to be used when sending.
/// @param[in] inverted Is the output signal to be inverted?
/// @param[in] use_modulation Is frequency modulation to be used?
IRTranscoldAc::IRTranscoldAc(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { stateReset(); }
/// Reset the internal state to a fixed known good state.
void IRTranscoldAc::stateReset(void) {
setRaw(kTranscoldKnownGoodState);
special_state = kTranscoldOff;
swingFlag = false;
swingHFlag = false;
swingVFlag = false;
}
/// Set up hardware to be able to send a message.
void IRTranscoldAc::begin(void) { _irsend.begin(); }
#if SEND_TRANSCOLD
/// Send the current internal state as an IR message.
/// @param[in] repeat Nr. of times the message will be repeated.
void IRTranscoldAc::send(uint16_t repeat) {
_irsend.sendTranscold(getRaw(), kTranscoldBits, repeat);
if (isSpecialState()) {
// make sure to remove special state from special_state
// after command has being transmitted.
special_state = kTranscoldKnownGoodState;
}
}
#endif // SEND_TRANSCOLD
/// Get a copy of the internal state as a valid code for this protocol.
/// @return A valid code for this protocol based on the current internal state.
uint32_t IRTranscoldAc::getRaw(void) const {
if (isSpecialState()) {
return special_state;
}
return _.raw;
}
/// Set the internal state from a valid code for this protocol.
/// @param[in] new_code A valid code for this protocol.
void IRTranscoldAc::setRaw(const uint32_t new_code) {
if (handleSpecialState(new_code)) {
special_state = new_code;
_.raw = kTranscoldKnownGoodState;
} else {
// must be a command changing Temp|Mode|Fan
// it is safe to just copy to remote var
_.raw = new_code;
special_state = kTranscoldKnownGoodState;
// it isn`t special so might affect Temp|mode|Fan
if (new_code == kTranscoldCmdFan) {
setMode(kTranscoldFan);
}
}
}
/// Is the current state is a special state?
/// @return true, if it is. false if it isn't.
bool IRTranscoldAc::isSpecialState(void) const {
switch (special_state) {
case kTranscoldOff:
case kTranscoldSwing: return true;
default: return false;
}
}
/// Adjust any internal settings based on the type of special state we are
/// supplied. Does nothing if it isn't a special state.
/// @param[in] data The state we need to act upon.
/// @note Special state means commands that are not affecting
/// Temperature/Mode/Fan
/// @return true, if it is a special state. false if it isn't.
bool IRTranscoldAc::handleSpecialState(const uint32_t data) {
switch (data) {
case kTranscoldOff:
break;
case kTranscoldSwing:
swingFlag = !swingFlag;
break;
default:
return false;
}
return true;
}
/// Set the temperature.
/// @param[in] desired The temperature in degrees celsius.
void IRTranscoldAc::setTemp(const uint8_t desired) {
// Range check.
uint8_t temp = std::min(desired, kTranscoldTempMax);
temp = std::max(temp, kTranscoldTempMin) - kTranscoldTempMin + 1;
_.Temp = reverseBits(invertBits(temp, kTranscoldTempSize),
kTranscoldTempSize);
}
/// Get the current temperature setting.
/// @return The current setting for temp. in degrees celsius.
uint8_t IRTranscoldAc::getTemp(void) const {
return reverseBits(invertBits(_.Temp, kTranscoldTempSize),
kTranscoldTempSize) + kTranscoldTempMin - 1;
}
/// Get the value of the current power setting.
/// @return true, the setting is on. false, the setting is off.
bool IRTranscoldAc::getPower(void) const {
// There is only an off state. Everything else is "on".
return special_state != kTranscoldOff;
}
/// Change the power setting.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRTranscoldAc::setPower(const bool on) {
if (!on) {
special_state = kTranscoldOff;
} else {
special_state = kTranscoldKnownGoodState;
}
}
/// Change the power setting to On.
void IRTranscoldAc::on(void) { setPower(true); }
/// Change the power setting to Off.
void IRTranscoldAc::off(void) { setPower(false); }
/// Get the Swing setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRTranscoldAc::getSwing(void) const { return swingFlag; }
/// Toggle the Swing mode of the A/C.
void IRTranscoldAc::setSwing(void) {
// Assumes that repeated sending "swing" toggles the action on the device.
// if not, the variable "swingFlag" can be removed.
special_state = kTranscoldSwing;
swingFlag = !swingFlag;
}
/// Set the operating mode of the A/C.
/// @param[in] mode The desired operating mode.
void IRTranscoldAc::setMode(const uint8_t mode) {
uint32_t actualmode = mode;
switch (actualmode) {
case kTranscoldAuto:
case kTranscoldDry:
_.Fan = kTranscoldFanAuto0;
break;
case kTranscoldCool:
case kTranscoldHeat:
case kTranscoldFan:
_.Fan = kTranscoldFanAuto;
break;
default: // Anything else, go with Auto mode.
actualmode = kTranscoldAuto;
_.Fan = kTranscoldFanAuto0;
}
setTemp(getTemp());
// Fan mode is a special case of Dry.
if (actualmode == kTranscoldFan) {
actualmode = kTranscoldDry;
_.Temp = kTranscoldFanTempCode;
}
_.Mode = actualmode;
}
/// Get the operating mode setting of the A/C.
/// @return The current operating mode setting.
uint8_t IRTranscoldAc::getMode(void) const {
uint8_t mode = _.Mode;
if (mode == kTranscoldDry)
if (_.Temp == kTranscoldFanTempCode) return kTranscoldFan;
return mode;
}
/// Get the current fan speed setting.
/// @return The current fan speed.
uint8_t IRTranscoldAc::getFan(void) const {
return _.Fan;
}
/// Set the speed of the fan.
/// @param[in] speed The desired setting.
/// @param[in] modecheck Do we enforce any mode limitations before setting?
void IRTranscoldAc::setFan(const uint8_t speed, const bool modecheck) {
uint8_t newspeed = speed;
if (modecheck) {
switch (getMode()) {
case kTranscoldAuto:
case kTranscoldDry: // Dry & Auto mode can't have speed Auto.
if (speed == kTranscoldFanAuto)
newspeed = kTranscoldFanAuto0;
break;
default: // Only Dry & Auto mode can have speed Auto0.
if (speed == kTranscoldFanAuto0)
newspeed = kTranscoldFanAuto;
}
}
switch (speed) {
case kTranscoldFanAuto:
case kTranscoldFanAuto0:
case kTranscoldFanMin:
case kTranscoldFanMed:
case kTranscoldFanMax:
case kTranscoldFanZoneFollow:
case kTranscoldFanFixed:
break;
default: // Unknown speed requested.
newspeed = kTranscoldFanAuto;
break;
}
_.Fan = newspeed;
}
/// Convert a standard A/C mode into its native mode.
/// @param[in] mode A stdAc::opmode_t to be converted to it's native equivalent.
/// @return The corresponding native mode.
uint8_t IRTranscoldAc::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kTranscoldCool;
case stdAc::opmode_t::kHeat: return kTranscoldHeat;
case stdAc::opmode_t::kDry: return kTranscoldDry;
case stdAc::opmode_t::kFan: return kTranscoldFan;
default: return kTranscoldAuto;
}
}
/// Convert a stdAc::fanspeed_t enum into it's native speed.
/// @param[in] speed The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRTranscoldAc::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin:
case stdAc::fanspeed_t::kLow: return kTranscoldFanMin;
case stdAc::fanspeed_t::kMedium: return kTranscoldFanMed;
case stdAc::fanspeed_t::kHigh:
case stdAc::fanspeed_t::kMax: return kTranscoldFanMax;
default: return kTranscoldFanAuto;
}
}
/// Convert a native mode to it's common stdAc::opmode_t equivalent.
/// @param[in] mode A native operation mode to be converted.
/// @return The corresponding common stdAc::opmode_t mode.
stdAc::opmode_t IRTranscoldAc::toCommonMode(const uint8_t mode) {
switch (mode) {
case kTranscoldCool: return stdAc::opmode_t::kCool;
case kTranscoldHeat: return stdAc::opmode_t::kHeat;
case kTranscoldDry: return stdAc::opmode_t::kDry;
case kTranscoldFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
/// Convert a native fan speed into its stdAc equivalent.
/// @param[in] speed The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::fanspeed_t IRTranscoldAc::toCommonFanSpeed(const uint8_t speed) {
switch (speed) {
case kTranscoldFanMax: return stdAc::fanspeed_t::kMax;
case kTranscoldFanMed: return stdAc::fanspeed_t::kMedium;
case kTranscoldFanMin: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
/// Convert the A/C state to it's common stdAc::state_t equivalent.
/// @param[in] prev Ptr to the previous state if required.
/// @return A stdAc::state_t state.
stdAc::state_t IRTranscoldAc::toCommon(const stdAc::state_t *prev) const {
stdAc::state_t result;
// Start with the previous state if given it.
if (prev != NULL) {
result = *prev;
} else {
// Set defaults for non-zero values that are not implicitly set for when
// there is no previous state.
// e.g. Any setting that toggles should probably go here.
result.swingv = stdAc::swingv_t::kOff;
}
// Not supported.
result.model = -1; // No models used.
result.swingh = stdAc::swingh_t::kOff;
result.turbo = false;
result.clean = false;
result.light = false;
result.quiet = false;
result.econo = false;
result.filter = false;
result.beep = false;
result.clock = -1;
result.sleep = -1;
// Supported.
result.protocol = decode_type_t::TRANSCOLD;
result.celsius = true;
result.power = getPower();
// Power off state no other state info. Use the previous state if we have it.
if (!result.power) return result;
// Handle the special single command (Swing/Turbo/Light/Clean/Sleep) toggle
// messages. These have no other state info so use the rest of the previous
// state if we have it for them.
if (getSwing()) {
result.swingv = result.swingv != stdAc::swingv_t::kOff ?
stdAc::swingv_t::kOff : stdAc::swingv_t::kAuto; // Invert swing.
return result;
}
// Back to "normal" stateful messages.
result.mode = toCommonMode(getMode());
result.degrees = getTemp();
result.fanspeed = toCommonFanSpeed(_.Fan);
return result;
}
/// Convert the internal state into a human readable string.
/// @return The current internal state expressed as a human readable String.
String IRTranscoldAc::toString(void) const {
String result = "";
result.reserve(100); // Reserve some heap for the string to reduce fragging.
result += addBoolToString(getPower(), kPowerStr, false);
if (!getPower()) return result; // If it's off, there is no other info.
// Special modes.
if (getSwing()) {
result += kCommaSpaceStr;
result += kSwingStr;
result += kColonSpaceStr;
result += kToggleStr;
return result;
}
result += addModeToString(getMode(), kTranscoldAuto, kTranscoldCool,
kTranscoldHeat, kTranscoldDry, kTranscoldFan);
result += addIntToString(_.Fan, kFanStr);
result += kSpaceLBraceStr;
switch (_.Fan) {
case kTranscoldFanAuto:
result += kAutoStr;
break;
case kTranscoldFanAuto0:
result += kAutoStr;
result += '0';
break;
case kTranscoldFanMax:
result += kMaxStr;
break;
case kTranscoldFanMin:
result += kMinStr;
break;
case kTranscoldFanMed:
result += kMedStr;
break;
case kTranscoldFanZoneFollow:
result += kZoneFollowStr;
break;
case kTranscoldFanFixed:
result += kFixedStr;
break;
default:
result += kUnknownStr;
}
result += ')';
// Fan mode doesn't have a temperature.
if (getMode() != kTranscoldFan) result += addTempToString(getTemp());
return result;
}
#if DECODE_TRANSCOLD
/// Decode the supplied Transcold A/C message.
/// Status: STABLE / Known Working.
/// @param[in,out] results Ptr to the data to decode & where to store the decode
/// result.
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return A boolean. True if it can decode it, false if it can't.
bool IRrecv::decodeTranscold(decode_results *results, uint16_t offset,
const uint16_t nbits, const bool strict) {
// The protocol sends the data normal + inverted, alternating on
// each byte. Hence twice the number of expected data bits.
if (results->rawlen <= 2 * 2 * nbits + kHeader + kFooter - 1 + offset)
return false;
if (strict && nbits != kTranscoldBits) return false;
if (nbits % 8 != 0) return false;
uint64_t data = 0;
uint64_t inverted = 0;
if (nbits > sizeof(data) * 8)
return false; // We can't possibly capture a Transcold packet that big.
// Header
if (!matchMark(results->rawbuf[offset++], kTranscoldHdrMark)) return false;
if (!matchSpace(results->rawbuf[offset++], kTranscoldHdrSpace)) return false;
// Data
// Twice as many bits as there are normal plus inverted bits.
for (uint16_t i = 0; i < nbits * 2; i++, offset++) {
bool flip = (i / 8) % 2;
if (!matchMark(results->rawbuf[offset++], kTranscoldBitMark))
return false;
if (matchSpace(results->rawbuf[offset], kTranscoldOneSpace)) {
if (flip)
inverted = (inverted << 1) | 1;
else
data = (data << 1) | 1;
} else if (matchSpace(results->rawbuf[offset], kTranscoldZeroSpace)) {
if (flip)
inverted <<= 1;
else
data <<= 1;
} else {
return false;
}
}
// Footer
if (!matchMark(results->rawbuf[offset++], kTranscoldBitMark)) return false;
if (!matchSpace(results->rawbuf[offset++], kTranscoldHdrSpace)) return false;
if (!matchMark(results->rawbuf[offset++], kTranscoldBitMark)) return false;
if (offset < results->rawlen &&
!matchAtLeast(results->rawbuf[offset], kDefaultMessageGap))
return false;
// Compliance
if (strict && inverted != invertBits(data, nbits)) return false;
// Success
results->decode_type = decode_type_t::TRANSCOLD;
results->bits = nbits;
results->value = data;
results->address = 0;
results->command = 0;
return true;
}
#endif // DECODE_TRANSCOLD