Tasmota/lib/lib_basic/IRremoteESP8266-2.7.13/src/ir_Toshiba.cpp
2020-11-25 19:41:51 +01:00

509 lines
19 KiB
C++

// Copyright 2017 David Conran
/// @file
/// @brief Support for Toshiba protocols.
/// @see https://github.com/r45635/HVAC-IR-Control
/// @see https://github.com/r45635/HVAC-IR-Control/blob/master/HVAC_ESP8266/HVAC_ESP8266T.ino#L77
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1205
/// @see https://www.toshiba-carrier.co.jp/global/about/index.htm
/// @see http://www.toshiba-carrier.co.th/AboutUs/Pages/CompanyProfile.aspx
#include "ir_Toshiba.h"
#include <algorithm>
#include <cstring>
#ifndef ARDUINO
#include <string>
#endif
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
// Constants
// Toshiba A/C
const uint16_t kToshibaAcHdrMark = 4400;
const uint16_t kToshibaAcHdrSpace = 4300;
const uint16_t kToshibaAcBitMark = 580;
const uint16_t kToshibaAcOneSpace = 1600;
const uint16_t kToshibaAcZeroSpace = 490;
const uint16_t kToshibaAcMinGap = 7400;
using irutils::addBoolToString;
using irutils::addFanToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addTempToString;
using irutils::checkInvertedBytePairs;
using irutils::invertBytePairs;
using irutils::setBit;
using irutils::setBits;
#if SEND_TOSHIBA_AC
/// Send a Toshiba A/C message.
/// Status: STABLE / Working.
/// @param[in] data The message to be sent.
/// @param[in] nbytes The number of bytes of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
void IRsend::sendToshibaAC(const uint8_t data[], const uint16_t nbytes,
const uint16_t repeat) {
sendGeneric(kToshibaAcHdrMark, kToshibaAcHdrSpace, kToshibaAcBitMark,
kToshibaAcOneSpace, kToshibaAcBitMark, kToshibaAcZeroSpace,
kToshibaAcBitMark, kToshibaAcMinGap, data, nbytes, 38, true,
repeat, 50);
}
#endif // SEND_TOSHIBA_AC
/// Class constructor
/// @param[in] pin GPIO to be used when sending.
/// @param[in] inverted Is the output signal to be inverted?
/// @param[in] use_modulation Is frequency modulation to be used?
IRToshibaAC::IRToshibaAC(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { stateReset(); }
/// Reset the state of the remote to a known good state/sequence.
/// @see https://github.com/r45635/HVAC-IR-Control/blob/master/HVAC_ESP8266/HVAC_ESP8266T.ino#L103
void IRToshibaAC::stateReset(void) {
static const uint8_t kReset[kToshibaACStateLength] = {
0xF2, 0x0D, 0x03, 0xFC, 0x01};
memcpy(remote_state, kReset, kToshibaACStateLength);
setTemp(22); // Remote defaults to 22C after factory reset. So do the same.
setSwing(kToshibaAcSwingOff);
prev_mode = getMode();
}
/// Set up hardware to be able to send a message.
void IRToshibaAC::begin(void) { _irsend.begin(); }
#if SEND_TOSHIBA_AC
/// Send the current internal state as IR messages.
/// @param[in] repeat Nr. of times the message will be repeated.
void IRToshibaAC::send(const uint16_t repeat) {
_backupState();
_irsend.sendToshibaAC(getRaw(), getStateLength(), repeat);
if (_send_swing && (getStateLength() != kToshibaACStateLengthShort)) {
setStateLength(kToshibaACStateLengthShort);
// Swing settings expect the min temp to be set.
// Ref: https://github.com/crankyoldgit/IRremoteESP8266/issues/1205#issuecomment-653922374
setTemp(kToshibaAcMinTemp);
setSwing(_swing_mode);
_irsend.sendToshibaAC(getRaw(), getStateLength(), repeat);
_restoreState();
}
_send_swing = false;
}
#endif // SEND_TOSHIBA_AC
/// Get the length of the supplied Toshiba state per it's protocol structure.
/// @param[in] state The array to get the built-in length from.
/// @param[in] size The physical size of the state array.
/// @return Nr. of bytes in use for the provided state message.
uint16_t IRToshibaAC::getInternalStateLength(const uint8_t state[],
const uint16_t size) {
if (size < kToshibaAcLengthByte) return 0;
return std::min((uint16_t)(state[kToshibaAcLengthByte] + kToshibaAcMinLength),
kToshibaACStateLengthLong);
}
/// Get the length of the current internal state per the protocol structure.
/// @return Nr. of bytes in use for the current internal state message.
uint16_t IRToshibaAC::getStateLength(void) {
return getInternalStateLength(remote_state, kToshibaACStateLengthLong);
}
/// Set the internal length of the current internal state per the protocol.
/// @param[in] size Nr. of bytes in use for the current internal state message.
void IRToshibaAC::setStateLength(const uint16_t size) {
if (size < kToshibaAcMinLength) return;
remote_state[kToshibaAcLengthByte] = size - kToshibaAcMinLength;
}
/// Make a copy of the internal code-form A/C state.
void IRToshibaAC::_backupState(void) {
memcpy(backup, remote_state, kToshibaACStateLengthLong);
}
/// Recover the internal code-form A/C state from the backup.
void IRToshibaAC::_restoreState(void) {
memcpy(remote_state, backup, kToshibaACStateLengthLong);
}
/// Get a PTR to the internal state/code for this protocol with all integrity
/// checks passing.
/// @return PTR to a code for this protocol based on the current internal state.
uint8_t* IRToshibaAC::getRaw(void) {
checksum(getStateLength());
return remote_state;
}
/// Set the internal state from a valid code for this protocol.
/// @param[in] newState A valid code for this protocol.
void IRToshibaAC::setRaw(const uint8_t newState[]) {
memcpy(remote_state, newState, kToshibaACStateLength);
prev_mode = getMode();
_send_swing = true;
}
/// Calculate the checksum for a given state.
/// @param[in] state The array to calc the checksum of.
/// @param[in] length The length/size of the array.
/// @return The calculated checksum value.
uint8_t IRToshibaAC::calcChecksum(const uint8_t state[],
const uint16_t length) {
return length ? xorBytes(state, length - 1) : 0;
}
/// Verify the checksum is valid for a given state.
/// @param[in] state The array to verify the checksum of.
/// @param[in] length The length/size of the array.
/// @return true, if the state has a valid checksum. Otherwise, false.
bool IRToshibaAC::validChecksum(const uint8_t state[], const uint16_t length) {
return length >= kToshibaAcMinLength &&
state[length - 1] == IRToshibaAC::calcChecksum(state, length) &&
checkInvertedBytePairs(state, kToshibaAcInvertedLength) &&
IRToshibaAC::getInternalStateLength(state, length) == length;
}
/// Calculate & set the checksum for the current internal state of the remote.
/// @param[in] length The length/size of the internal array to checksum.
void IRToshibaAC::checksum(const uint16_t length) {
// Stored the checksum value in the last byte.
if (length >= kToshibaAcMinLength) {
// Set/clear the short msg bit.
setBit(&remote_state[4], kToshibaAcShortMsgBit,
getStateLength() == kToshibaACStateLengthShort);
// Set/clear the long msg bit.
setBit(&remote_state[4], kToshibaAcLongMsgBit,
getStateLength() == kToshibaACStateLengthLong);
invertBytePairs(remote_state, kToshibaAcInvertedLength);
// Always do the Xor checksum LAST!
remote_state[length - 1] = calcChecksum(remote_state, length);
}
}
/// Set the requested power state of the A/C to on.
void IRToshibaAC::on(void) { setPower(true); }
/// Set the requested power state of the A/C to off.
void IRToshibaAC::off(void) { setPower(false); }
/// Change the power setting.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRToshibaAC::setPower(const bool on) {
if (on) { // On
// If not already on, pick the last non-off mode used
if (!getPower()) setMode(prev_mode);
} else { // Off
setMode(kToshibaAcOff);
}
}
/// Get the value of the current power setting.
/// @return true, the setting is on. false, the setting is off.
bool IRToshibaAC::getPower(void) {
return getMode(true) != kToshibaAcOff;
}
/// Set the temperature.
/// @param[in] degrees The temperature in degrees celsius.
void IRToshibaAC::setTemp(const uint8_t degrees) {
uint8_t temp = std::max((uint8_t)kToshibaAcMinTemp, degrees);
temp = std::min((uint8_t)kToshibaAcMaxTemp, temp);
setBits(&remote_state[5], kToshibaAcTempOffset, kToshibaAcTempSize,
temp - kToshibaAcMinTemp);
}
/// Get the current temperature setting.
/// @return The current setting for temp. in degrees celsius.
uint8_t IRToshibaAC::getTemp(void) {
return GETBITS8(remote_state[5], kToshibaAcTempOffset, kToshibaAcTempSize) +
kToshibaAcMinTemp;
}
/// Set the speed of the fan.
/// @param[in] speed The desired setting (0 is Auto, 1-5 is the speed, 5 is Max)
void IRToshibaAC::setFan(const uint8_t speed) {
uint8_t fan = speed;
// Bounds check
if (fan > kToshibaAcFanMax)
fan = kToshibaAcFanMax; // Set the fan to maximum if out of range.
if (fan > kToshibaAcFanAuto) fan++;
setBits(&remote_state[6], kToshibaAcFanOffset, kToshibaAcFanSize, fan);
}
/// Get the current fan speed setting.
/// @return The current fan speed/mode.
uint8_t IRToshibaAC::getFan(void) {
uint8_t fan = GETBITS8(remote_state[6], kToshibaAcFanOffset,
kToshibaAcFanSize);
if (fan == kToshibaAcFanAuto) return kToshibaAcFanAuto;
return --fan;
}
/// Get the swing setting of the A/C.
/// @param[in] raw Calculate the answer from just the state data.
/// @return The current swing mode setting.
uint8_t IRToshibaAC::getSwing(const bool raw) {
return raw ? GETBITS8(remote_state[5], kToshibaAcSwingOffset,
kToshibaAcSwingSize) : _swing_mode;
}
/// Set the swing setting of the A/C.
/// @param[in] setting The value of the desired setting.
void IRToshibaAC::setSwing(const uint8_t setting) {
switch (setting) {
case kToshibaAcSwingStep:
case kToshibaAcSwingOn:
case kToshibaAcSwingOff:
_send_swing = true;
_swing_mode = setting;
if (getStateLength() == kToshibaACStateLengthShort)
setBits(&remote_state[5], kToshibaAcSwingOffset, kToshibaAcSwingSize,
setting);
}
}
/// Get the operating mode setting of the A/C.
/// @param[in] raw Get the value without any intelligent processing.
/// @return The current operating mode setting.
uint8_t IRToshibaAC::getMode(const bool raw) {
const uint8_t mode = GETBITS8(remote_state[6], kToshibaAcModeOffset,
kToshibaAcModeSize);
if (raw) return mode;
switch (mode) {
case kToshibaAcOff: return prev_mode;
default: return mode;
}
}
/// Set the operating mode of the A/C.
/// @param[in] mode The desired operating mode.
/// @note If we get an unexpected mode, default to AUTO.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1205#issuecomment-654446771
void IRToshibaAC::setMode(const uint8_t mode) {
if (mode != prev_mode)
// Changing mode or power turns Econo & Turbo to off on a real remote.
// Setting the internal message length to "normal" will do that.
setStateLength(kToshibaACStateLength);
switch (mode) {
case kToshibaAcAuto:
case kToshibaAcCool:
case kToshibaAcDry:
case kToshibaAcHeat:
case kToshibaAcFan:
prev_mode = mode;
// FALL-THRU
case kToshibaAcOff:
setBits(&remote_state[6], kToshibaAcModeOffset, kToshibaAcModeSize,
mode);
break;
default: setMode(kToshibaAcAuto);
}
}
/// Get the Turbo (Powerful) setting of the A/C.
/// @return true, if the current setting is on. Otherwise, false.
bool IRToshibaAC::getTurbo(void) {
if (getStateLength() == kToshibaACStateLengthLong)
return remote_state[8] == kToshibaAcTurboOn;
return false;
}
/// Set the Turbo (Powerful) setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
/// Note: Turbo mode is mutually exclusive with Economy mode.
void IRToshibaAC::setTurbo(const bool on) {
if (on) {
remote_state[8] = kToshibaAcTurboOn;
setStateLength(kToshibaACStateLengthLong);
} else {
if (!getEcono()) setStateLength(kToshibaACStateLength);
}
}
/// Get the Economy mode setting of the A/C.
/// @return true, if the current setting is on. Otherwise, false.
bool IRToshibaAC::getEcono(void) {
if (getStateLength() == kToshibaACStateLengthLong)
return remote_state[8] == kToshibaAcEconoOn;
return false;
}
/// Set the Economy mode setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
/// Note: Economy mode is mutually exclusive with Turbo mode.
void IRToshibaAC::setEcono(const bool on) {
if (on) {
remote_state[8] = kToshibaAcEconoOn;
setStateLength(kToshibaACStateLengthLong);
} else {
if (!getTurbo()) setStateLength(kToshibaACStateLength);
}
}
/// Convert a stdAc::opmode_t enum into its native mode.
/// @param[in] mode The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRToshibaAC::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kToshibaAcCool;
case stdAc::opmode_t::kHeat: return kToshibaAcHeat;
case stdAc::opmode_t::kDry: return kToshibaAcDry;
case stdAc::opmode_t::kFan: return kToshibaAcFan;
case stdAc::opmode_t::kOff: return kToshibaAcOff;
default: return kToshibaAcAuto;
}
}
/// Convert a stdAc::fanspeed_t enum into it's native speed.
/// @param[in] speed The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRToshibaAC::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin: return kToshibaAcFanMax - 4;
case stdAc::fanspeed_t::kLow: return kToshibaAcFanMax - 3;
case stdAc::fanspeed_t::kMedium: return kToshibaAcFanMax - 2;
case stdAc::fanspeed_t::kHigh: return kToshibaAcFanMax - 1;
case stdAc::fanspeed_t::kMax: return kToshibaAcFanMax;
default: return kToshibaAcFanAuto;
}
}
/// Convert a native mode into its stdAc equivalent.
/// @param[in] mode The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::opmode_t IRToshibaAC::toCommonMode(const uint8_t mode) {
switch (mode) {
case kToshibaAcCool: return stdAc::opmode_t::kCool;
case kToshibaAcHeat: return stdAc::opmode_t::kHeat;
case kToshibaAcDry: return stdAc::opmode_t::kDry;
case kToshibaAcFan: return stdAc::opmode_t::kFan;
case kToshibaAcOff: return stdAc::opmode_t::kOff;
default: return stdAc::opmode_t::kAuto;
}
}
/// Convert a native fan speed into its stdAc equivalent.
/// @param[in] spd The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::fanspeed_t IRToshibaAC::toCommonFanSpeed(const uint8_t spd) {
switch (spd) {
case kToshibaAcFanMax: return stdAc::fanspeed_t::kMax;
case kToshibaAcFanMax - 1: return stdAc::fanspeed_t::kHigh;
case kToshibaAcFanMax - 2: return stdAc::fanspeed_t::kMedium;
case kToshibaAcFanMax - 3: return stdAc::fanspeed_t::kLow;
case kToshibaAcFanMax - 4: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
/// Convert the current internal state into its stdAc::state_t equivalent.
/// @return The stdAc equivalent of the native settings.
stdAc::state_t IRToshibaAC::toCommon(void) {
stdAc::state_t result;
result.protocol = decode_type_t::TOSHIBA_AC;
result.model = -1; // Not supported.
result.power = this->getPower();
result.mode = this->toCommonMode(this->getMode());
result.celsius = true;
result.degrees = this->getTemp();
result.fanspeed = this->toCommonFanSpeed(this->getFan());
result.swingv = (getSwing() == kToshibaAcSwingOn) ? stdAc::swingv_t::kAuto
: stdAc::swingv_t::kOff;
result.turbo = getTurbo();
result.econo = getEcono();
// Not supported.
result.light = false;
result.filter = false;
result.swingh = stdAc::swingh_t::kOff;
result.quiet = false;
result.clean = false;
result.beep = false;
result.sleep = -1;
result.clock = -1;
return result;
}
/// Convert the current internal state into a human readable string.
/// @return A human readable string.
String IRToshibaAC::toString(void) {
String result = "";
result.reserve(80);
result += addTempToString(getTemp(), true, false);
switch (getStateLength()) {
case kToshibaACStateLengthShort:
result += addIntToString(getSwing(true), kSwingVStr);
result += kSpaceLBraceStr;
switch (getSwing(true)) {
case kToshibaAcSwingOff: result += kOffStr; break;
case kToshibaAcSwingOn: result += kOnStr; break;
case kToshibaAcSwingStep: result += kStepStr; break;
default: result += kUnknownStr;
}
result += ')';
break;
case kToshibaACStateLengthLong:
case kToshibaACStateLength:
default:
result += addBoolToString(getPower(), kPowerStr);
if (getPower())
result += addModeToString(getMode(), kToshibaAcAuto, kToshibaAcCool,
kToshibaAcHeat, kToshibaAcDry, kToshibaAcFan);
result += addFanToString(getFan(), kToshibaAcFanMax, kToshibaAcFanMin,
kToshibaAcFanAuto, kToshibaAcFanAuto,
kToshibaAcFanMed);
result += addBoolToString(getTurbo(), kTurboStr);
result += addBoolToString(getEcono(), kEconoStr);
}
return result;
}
#if DECODE_TOSHIBA_AC
/// Decode the supplied Toshiba A/C message.
/// Status: STABLE / Working.
/// @param[in,out] results Ptr to the data to decode & where to store the result
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return True if it can decode it, false if it can't.
bool IRrecv::decodeToshibaAC(decode_results* results, uint16_t offset,
const uint16_t nbits, const bool strict) {
// Compliance
if (strict) {
switch (nbits) { // Must be called with the correct nr. of bits.
case kToshibaACBits:
case kToshibaACBitsShort:
case kToshibaACBitsLong:
break;
default:
return false;
}
}
// Match Header + Data + Footer
if (!matchGeneric(results->rawbuf + offset, results->state,
results->rawlen - offset, nbits,
kToshibaAcHdrMark, kToshibaAcHdrSpace,
kToshibaAcBitMark, kToshibaAcOneSpace,
kToshibaAcBitMark, kToshibaAcZeroSpace,
kToshibaAcBitMark, kToshibaAcMinGap, true,
_tolerance, kMarkExcess)) return false;
// Compliance
if (strict) {
// Check that the checksum of the message is correct.
if (!IRToshibaAC::validChecksum(results->state, nbits / 8)) return false;
}
// Success
results->decode_type = TOSHIBA_AC;
results->bits = nbits;
// No need to record the state as we stored it as we decoded it.
// As we use result->state, we don't record value, address, or command as it
// is a union data type.
return true;
}
#endif // DECODE_TOSHIBA_AC