Tasmota/lib/IRremoteESP8266-2.7.3/src/ir_Gree.cpp
2020-02-03 19:41:35 +01:00

579 lines
19 KiB
C++

// Copyright 2017 Ville Skyttä (scop)
// Copyright 2017, 2018 David Conran
//
// Code to emulate Gree protocol compatible HVAC devices.
// Should be compatible with:
// * Heat pumps carrying the "Ultimate" brand name.
// * EKOKAI air conditioners.
//
#include "ir_Gree.h"
#include <algorithm>
#include <cstring>
#ifndef ARDUINO
#include <string>
#endif
#include "IRrecv.h"
#include "IRremoteESP8266.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
#include "ir_Kelvinator.h"
// Constants
// Ref: https://github.com/ToniA/arduino-heatpumpir/blob/master/GreeHeatpumpIR.h
const uint16_t kGreeHdrMark = 9000;
const uint16_t kGreeHdrSpace = 4500; // See #684 and real example in unit tests
const uint16_t kGreeBitMark = 620;
const uint16_t kGreeOneSpace = 1600;
const uint16_t kGreeZeroSpace = 540;
const uint16_t kGreeMsgSpace = 19000;
const uint8_t kGreeBlockFooter = 0b010;
const uint8_t kGreeBlockFooterBits = 3;
using irutils::addBoolToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addModelToString;
using irutils::addFanToString;
using irutils::addTempToString;
using irutils::minsToString;
using irutils::setBit;
using irutils::setBits;
#if SEND_GREE
// Send a Gree Heat Pump message.
//
// Args:
// data: An array of bytes containing the IR command.
// nbytes: Nr. of bytes of data in the array. (>=kGreeStateLength)
// repeat: Nr. of times the message is to be repeated. (Default = 0).
//
// Status: ALPHA / Untested.
//
// Ref:
// https://github.com/ToniA/arduino-heatpumpir/blob/master/GreeHeatpumpIR.cpp
void IRsend::sendGree(const unsigned char data[], const uint16_t nbytes,
const uint16_t repeat) {
if (nbytes < kGreeStateLength)
return; // Not enough bytes to send a proper message.
for (uint16_t r = 0; r <= repeat; r++) {
// Block #1
sendGeneric(kGreeHdrMark, kGreeHdrSpace, kGreeBitMark, kGreeOneSpace,
kGreeBitMark, kGreeZeroSpace, 0, 0, // No Footer.
data, 4, 38, false, 0, 50);
// Footer #1
sendGeneric(0, 0, // No Header
kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace,
kGreeBitMark, kGreeMsgSpace, 0b010, 3, 38, false, 0, 50);
// Block #2
sendGeneric(0, 0, // No Header for Block #2
kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace,
kGreeBitMark, kGreeMsgSpace, data + 4, nbytes - 4, 38, false, 0,
50);
}
}
// Send a Gree Heat Pump message.
//
// Args:
// data: The raw message to be sent.
// nbits: Nr. of bits of data in the message. (Default is kGreeBits)
// repeat: Nr. of times the message is to be repeated. (Default = 0).
//
// Status: ALPHA / Untested.
//
// Ref:
// https://github.com/ToniA/arduino-heatpumpir/blob/master/GreeHeatpumpIR.cpp
void IRsend::sendGree(const uint64_t data, const uint16_t nbits,
const uint16_t repeat) {
if (nbits != kGreeBits)
return; // Wrong nr. of bits to send a proper message.
// Set IR carrier frequency
enableIROut(38);
for (uint16_t r = 0; r <= repeat; r++) {
// Header
mark(kGreeHdrMark);
space(kGreeHdrSpace);
// Data
for (int16_t i = 8; i <= nbits; i += 8) {
sendData(kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace,
(data >> (nbits - i)) & 0xFF, 8, false);
if (i == nbits / 2) {
// Send the mid-message Footer.
sendData(kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace,
0b010, 3);
mark(kGreeBitMark);
space(kGreeMsgSpace);
}
}
// Footer
mark(kGreeBitMark);
space(kGreeMsgSpace);
}
}
#endif // SEND_GREE
IRGreeAC::IRGreeAC(const uint16_t pin, const gree_ac_remote_model_t model,
const bool inverted, const bool use_modulation)
: _irsend(pin, inverted, use_modulation) {
stateReset();
setModel(model);
}
void IRGreeAC::stateReset(void) {
// This resets to a known-good state to Power Off, Fan Auto, Mode Auto, 25C.
for (uint8_t i = 0; i < kGreeStateLength; i++) remote_state[i] = 0x0;
remote_state[1] = 0x09;
remote_state[2] = 0x20;
remote_state[3] = 0x50;
remote_state[5] = 0x20;
remote_state[7] = 0x50;
}
void IRGreeAC::fixup(void) {
setPower(getPower()); // Redo the power bits as they differ between models.
checksum(); // Calculate the checksums
}
void IRGreeAC::begin(void) { _irsend.begin(); }
#if SEND_GREE
void IRGreeAC::send(const uint16_t repeat) {
fixup(); // Ensure correct settings before sending.
_irsend.sendGree(remote_state, kGreeStateLength, repeat);
}
#endif // SEND_GREE
uint8_t* IRGreeAC::getRaw(void) {
fixup(); // Ensure correct settings before sending.
return remote_state;
}
void IRGreeAC::setRaw(const uint8_t new_code[]) {
memcpy(remote_state, new_code, kGreeStateLength);
// We can only detect the difference between models when the power is on.
if (getPower()) {
if (GETBIT8(remote_state[2], kGreePower2Offset))
_model = gree_ac_remote_model_t::YAW1F;
else
_model = gree_ac_remote_model_t::YBOFB;
}
}
void IRGreeAC::checksum(const uint16_t length) {
// Gree uses the same checksum alg. as Kelvinator's block checksum.
setBits(&remote_state[length - 1], kHighNibble, kNibbleSize,
IRKelvinatorAC::calcBlockChecksum(remote_state, length));
}
// Verify the checksum is valid for a given state.
// Args:
// state: The array to verify the checksum of.
// length: The size of the state.
// Returns:
// A boolean.
bool IRGreeAC::validChecksum(const uint8_t state[], const uint16_t length) {
// Top 4 bits of the last byte in the state is the state's checksum.
return GETBITS8(state[length - 1], kHighNibble, kNibbleSize) ==
IRKelvinatorAC::calcBlockChecksum(state, length);
}
void IRGreeAC::setModel(const gree_ac_remote_model_t model) {
switch (model) {
case gree_ac_remote_model_t::YAW1F:
case gree_ac_remote_model_t::YBOFB: _model = model; break;
default: setModel(gree_ac_remote_model_t::YAW1F);
}
}
gree_ac_remote_model_t IRGreeAC::getModel(void) { return _model; }
void IRGreeAC::on(void) { setPower(true); }
void IRGreeAC::off(void) { setPower(false); }
void IRGreeAC::setPower(const bool on) {
setBit(&remote_state[0], kGreePower1Offset, on);
// May not be needed. See #814
setBit(&remote_state[2], kGreePower2Offset,
on && _model != gree_ac_remote_model_t::YBOFB);
}
bool IRGreeAC::getPower(void) {
// See #814. Not checking/requiring: (remote_state[2] & kGreePower2Mask)
return GETBIT8(remote_state[0], kGreePower1Offset);
}
// Set the temp. in deg C
void IRGreeAC::setTemp(const uint8_t temp) {
uint8_t new_temp = std::max((uint8_t)kGreeMinTemp, temp);
new_temp = std::min((uint8_t)kGreeMaxTemp, new_temp);
if (getMode() == kGreeAuto) new_temp = 25;
setBits(&remote_state[1], kLowNibble, kGreeTempSize, new_temp - kGreeMinTemp);
}
// Return the set temp. in deg C
uint8_t IRGreeAC::getTemp(void) {
return GETBITS8(remote_state[1], kLowNibble, kGreeTempSize) + kGreeMinTemp;
}
// Set the speed of the fan, 0-3, 0 is auto, 1-3 is the speed
void IRGreeAC::setFan(const uint8_t speed) {
uint8_t fan = std::min((uint8_t)kGreeFanMax, speed); // Bounds check
if (getMode() == kGreeDry) fan = 1; // DRY mode is always locked to fan 1.
// Set the basic fan values.
setBits(&remote_state[0], kGreeFanOffset, kGreeFanSize, fan);
}
uint8_t IRGreeAC::getFan(void) {
return GETBITS8(remote_state[0], kGreeFanOffset, kGreeFanSize);
}
void IRGreeAC::setMode(const uint8_t new_mode) {
uint8_t mode = new_mode;
switch (mode) {
// AUTO is locked to 25C
case kGreeAuto: setTemp(25); break;
// DRY always sets the fan to 1.
case kGreeDry: setFan(1); break;
case kGreeCool:
case kGreeFan:
case kGreeHeat: break;
// If we get an unexpected mode, default to AUTO.
default: mode = kGreeAuto;
}
setBits(&remote_state[0], kLowNibble, kModeBitsSize, mode);
}
uint8_t IRGreeAC::getMode(void) {
return GETBITS8(remote_state[0], kLowNibble, kModeBitsSize);
}
void IRGreeAC::setLight(const bool on) {
setBit(&remote_state[2], kGreeLightOffset, on);
}
bool IRGreeAC::getLight(void) {
return GETBIT8(remote_state[2], kGreeLightOffset);
}
void IRGreeAC::setIFeel(const bool on) {
setBit(&remote_state[5], kGreeIFeelOffset, on);
}
bool IRGreeAC::getIFeel(void) {
return GETBIT8(remote_state[5], kGreeIFeelOffset);
}
void IRGreeAC::setWiFi(const bool on) {
setBit(&remote_state[5], kGreeWiFiOffset, on);
}
bool IRGreeAC::getWiFi(void) {
return GETBIT8(remote_state[5], kGreeWiFiOffset);
}
void IRGreeAC::setXFan(const bool on) {
setBit(&remote_state[2], kGreeXfanOffset, on);
}
bool IRGreeAC::getXFan(void) {
return GETBIT8(remote_state[2], kGreeXfanOffset);
}
void IRGreeAC::setSleep(const bool on) {
setBit(&remote_state[0], kGreeSleepOffset, on);
}
bool IRGreeAC::getSleep(void) {
return GETBIT8(remote_state[0], kGreeSleepOffset);
}
void IRGreeAC::setTurbo(const bool on) {
setBit(&remote_state[2], kGreeTurboOffset, on);
}
bool IRGreeAC::getTurbo(void) {
return GETBIT8(remote_state[2], kGreeTurboOffset);
}
void IRGreeAC::setSwingVertical(const bool automatic, const uint8_t position) {
setBit(&remote_state[0], kGreeSwingAutoOffset, automatic);
uint8_t new_position = position;
if (!automatic) {
switch (position) {
case kGreeSwingUp:
case kGreeSwingMiddleUp:
case kGreeSwingMiddle:
case kGreeSwingMiddleDown:
case kGreeSwingDown:
break;
default:
new_position = kGreeSwingLastPos;
}
} else {
switch (position) {
case kGreeSwingAuto:
case kGreeSwingDownAuto:
case kGreeSwingMiddleAuto:
case kGreeSwingUpAuto:
break;
default:
new_position = kGreeSwingAuto;
}
}
setBits(&remote_state[4], kLowNibble, kGreeSwingSize, new_position);
}
bool IRGreeAC::getSwingVerticalAuto(void) {
return GETBIT8(remote_state[0], kGreeSwingAutoOffset);
}
uint8_t IRGreeAC::getSwingVerticalPosition(void) {
return GETBITS8(remote_state[4], kLowNibble, kGreeSwingSize);
}
void IRGreeAC::setTimerEnabled(const bool on) {
setBit(&remote_state[1], kGreeTimerEnabledOffset, on);
}
bool IRGreeAC::getTimerEnabled(void) {
return GETBIT8(remote_state[1], kGreeTimerEnabledOffset);
}
// Returns the number of minutes the timer is set for.
uint16_t IRGreeAC::getTimer(void) {
uint16_t hrs = irutils::bcdToUint8(
(GETBITS8(remote_state[1], kGreeTimerTensHrOffset,
kGreeTimerTensHrSize) << kNibbleSize) |
GETBITS8(remote_state[2], kGreeTimerHoursOffset, kGreeTimerHoursSize));
return hrs * 60 + (GETBIT8(remote_state[1], kGreeTimerHalfHrOffset) ? 30 : 0);
}
// Set the A/C's timer to turn off in X many minutes.
// Stores time internally in 30 min units.
// e.g. 5 mins means 0 (& Off), 95 mins is 90 mins (& On). Max is 24 hours.
//
// Args:
// minutes: The number of minutes the timer should be set for.
void IRGreeAC::setTimer(const uint16_t minutes) {
uint16_t mins = std::min(kGreeTimerMax, minutes); // Bounds check.
setTimerEnabled(mins >= 30); // Timer is enabled when >= 30 mins.
uint8_t hours = mins / 60;
// Set the half hour bit.
setBit(&remote_state[1], kGreeTimerHalfHrOffset, !((mins % 60) < 30));
// Set the "tens" digit of hours.
setBits(&remote_state[1], kGreeTimerTensHrOffset, kGreeTimerTensHrSize,
hours / 10);
// Set the "units" digit of hours.
setBits(&remote_state[2], kGreeTimerHoursOffset, kGreeTimerHoursSize,
hours % 10);
}
// Convert a standard A/C mode into its native mode.
uint8_t IRGreeAC::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kGreeCool;
case stdAc::opmode_t::kHeat: return kGreeHeat;
case stdAc::opmode_t::kDry: return kGreeDry;
case stdAc::opmode_t::kFan: return kGreeFan;
default: return kGreeAuto;
}
}
// Convert a standard A/C Fan speed into its native fan speed.
uint8_t IRGreeAC::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin: return kGreeFanMin;
case stdAc::fanspeed_t::kLow:
case stdAc::fanspeed_t::kMedium: return kGreeFanMax - 1;
case stdAc::fanspeed_t::kHigh:
case stdAc::fanspeed_t::kMax: return kGreeFanMax;
default: return kGreeFanAuto;
}
}
// Convert a standard A/C Vertical Swing into its native version.
uint8_t IRGreeAC::convertSwingV(const stdAc::swingv_t swingv) {
switch (swingv) {
case stdAc::swingv_t::kHighest: return kGreeSwingUp;
case stdAc::swingv_t::kHigh: return kGreeSwingMiddleUp;
case stdAc::swingv_t::kMiddle: return kGreeSwingMiddle;
case stdAc::swingv_t::kLow: return kGreeSwingMiddleDown;
case stdAc::swingv_t::kLowest: return kGreeSwingDown;
default: return kGreeSwingAuto;
}
}
// Convert a native mode to it's common equivalent.
stdAc::opmode_t IRGreeAC::toCommonMode(const uint8_t mode) {
switch (mode) {
case kGreeCool: return stdAc::opmode_t::kCool;
case kGreeHeat: return stdAc::opmode_t::kHeat;
case kGreeDry: return stdAc::opmode_t::kDry;
case kGreeFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
// Convert a native fan speed to it's common equivalent.
stdAc::fanspeed_t IRGreeAC::toCommonFanSpeed(const uint8_t speed) {
switch (speed) {
case kGreeFanMax: return stdAc::fanspeed_t::kMax;
case kGreeFanMax - 1: return stdAc::fanspeed_t::kMedium;
case kGreeFanMin: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
// Convert a native vertical swing to it's common equivalent.
stdAc::swingv_t IRGreeAC::toCommonSwingV(const uint8_t pos) {
switch (pos) {
case kGreeSwingUp: return stdAc::swingv_t::kHighest;
case kGreeSwingMiddleUp: return stdAc::swingv_t::kHigh;
case kGreeSwingMiddle: return stdAc::swingv_t::kMiddle;
case kGreeSwingMiddleDown: return stdAc::swingv_t::kLow;
case kGreeSwingDown: return stdAc::swingv_t::kLowest;
default: return stdAc::swingv_t::kAuto;
}
}
// Convert the A/C state to it's common equivalent.
stdAc::state_t IRGreeAC::toCommon(void) {
stdAc::state_t result;
result.protocol = decode_type_t::GREE;
result.model = this->getModel();
result.power = this->getPower();
result.mode = this->toCommonMode(this->getMode());
result.celsius = true;
result.degrees = this->getTemp();
result.fanspeed = this->toCommonFanSpeed(this->getFan());
if (this->getSwingVerticalAuto())
result.swingv = stdAc::swingv_t::kAuto;
else
result.swingv = this->toCommonSwingV(this->getSwingVerticalPosition());
result.turbo = this->getTurbo();
result.light = this->getLight();
result.clean = this->getXFan();
result.sleep = this->getSleep() ? 0 : -1;
// Not supported.
result.swingh = stdAc::swingh_t::kOff;
result.quiet = false;
result.econo = false;
result.filter = false;
result.beep = false;
result.clock = -1;
return result;
}
// Convert the internal state into a human readable string.
String IRGreeAC::toString(void) {
String result = "";
result.reserve(150); // Reserve some heap for the string to reduce fragging.
result += addModelToString(decode_type_t::GREE, getModel(), false);
result += addBoolToString(getPower(), kPowerStr);
result += addModeToString(getMode(), kGreeAuto, kGreeCool, kGreeHeat,
kGreeDry, kGreeFan);
result += addTempToString(getTemp());
result += addFanToString(getFan(), kGreeFanMax, kGreeFanMin, kGreeFanAuto,
kGreeFanAuto, kGreeFanMed);
result += addBoolToString(getTurbo(), kTurboStr);
result += addBoolToString(getIFeel(), kIFeelStr);
result += addBoolToString(getWiFi(), kWifiStr);
result += addBoolToString(getXFan(), kXFanStr);
result += addBoolToString(getLight(), kLightStr);
result += addBoolToString(getSleep(), kSleepStr);
result += addLabeledString(getSwingVerticalAuto() ? kAutoStr : kManualStr,
kSwingVModeStr);
result += addIntToString(getSwingVerticalPosition(), kSwingVStr);
result += kSpaceLBraceStr;
switch (getSwingVerticalPosition()) {
case kGreeSwingLastPos:
result += kLastStr;
break;
case kGreeSwingAuto:
result += kAutoStr;
break;
default: result += kUnknownStr;
}
result += ')';
result += addLabeledString(
getTimerEnabled() ? minsToString(getTimer()) : kOffStr, kTimerStr);
return result;
}
#if DECODE_GREE
// Decode the supplied Gree message.
//
// Args:
// results: Ptr to the data to decode and where to store the decode result.
// nbits: The number of data bits to expect. Typically kGreeBits.
// strict: Flag indicating if we should perform strict matching.
// Returns:
// boolean: True if it can decode it, false if it can't.
//
// Status: ALPHA / Untested.
bool IRrecv::decodeGree(decode_results* results, uint16_t nbits, bool strict) {
if (results->rawlen <
2 * (nbits + kGreeBlockFooterBits) + (kHeader + kFooter + 1))
return false; // Can't possibly be a valid Gree message.
if (strict && nbits != kGreeBits)
return false; // Not strictly a Gree message.
uint16_t offset = kStartOffset;
// There are two blocks back-to-back in a full Gree IR message
// sequence.
uint16_t used;
// Header + Data Block #1 (32 bits)
used = matchGeneric(results->rawbuf + offset, results->state,
results->rawlen - offset, nbits / 2,
kGreeHdrMark, kGreeHdrSpace,
kGreeBitMark, kGreeOneSpace,
kGreeBitMark, kGreeZeroSpace,
0, 0, false,
_tolerance, kMarkExcess, false);
if (used == 0) return false;
offset += used;
// Block #1 footer (3 bits, B010)
match_result_t data_result;
data_result = matchData(&(results->rawbuf[offset]), kGreeBlockFooterBits,
kGreeBitMark, kGreeOneSpace, kGreeBitMark,
kGreeZeroSpace, _tolerance, kMarkExcess, false);
if (data_result.success == false) return false;
if (data_result.data != kGreeBlockFooter) return false;
offset += data_result.used;
// Inter-block gap + Data Block #2 (32 bits) + Footer
if (!matchGeneric(results->rawbuf + offset, results->state + 4,
results->rawlen - offset, nbits / 2,
kGreeBitMark, kGreeMsgSpace,
kGreeBitMark, kGreeOneSpace,
kGreeBitMark, kGreeZeroSpace,
kGreeBitMark, kGreeMsgSpace, true,
_tolerance, kMarkExcess, false)) return false;
// Compliance
if (strict) {
// Verify the message's checksum is correct.
if (!IRGreeAC::validChecksum(results->state)) return false;
}
// Success
results->decode_type = GREE;
results->bits = nbits;
// No need to record the state as we stored it as we decoded it.
// As we use result->state, we don't record value, address, or command as it
// is a union data type.
return true;
}
#endif // DECODE_GREE