Tasmota/lib/lib_div/FastCRC/src/FastCRChw.cpp
Thomas Büngener 4ed48feaa2
SML: CRC for binary SML (#23205)
* SML: CRC for binary SML parsing

* switch algos

* improve errormessage on buffer overflow

* move crc variable to their own struct

* Use Flag bit to disable CRC, auto-detect algorithm,
data in own struct
debug log

* configure and enable/disable via special option "=soC,bufsz,mode", mode 16 autodetect.

* fix 15 vs 0xF

* remove benchmark code

* fix typo in comment

* Byteflip for CRC
2025-04-05 11:22:22 +02:00

568 lines
16 KiB
C++

/* FastCRC library code is placed under the MIT license
* Copyright (c) 2014 - 2021 Frank Bösing
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
//
// HW-calculations are 32BIT
//
// Thanks to:
// - Catalogue of parametrised CRC algorithms, CRC RevEng
// http://reveng.sourceforge.net/crc-catalogue/
//
// - Danjel McGougan (CRC-Table-Generator)
//
#if defined(ARDUINO)
#include <Arduino.h>
#endif
#if defined(KINETISK)
#include "mk20dx128.h"
#include "FastCRC.h"
// ===============================================
typedef struct {
union {
uint32_t CRC; //CRC Data register
struct {
uint16_t CRC16;
uint16_t CRC16_1;
};
struct {
uint8_t CRC8;
uint8_t CRC8_1;
uint8_t CRC8_2;
uint8_t CRC8_3;
};
};
uint32_t GPOLY; //CRC Polynomial register
uint32_t CTRL; //CRC Control register
} CRC_T;
static volatile CRC_T * const rCRC = (CRC_T *)0x40032000;
#define CRC_CTRL_WAS 25 // Write CRC Data Register As Seed(1) / Data(0)
#define CRC_CTRL_TCRC 24 // Width of CRC protocol (0=16 BIT, 1=32 BIT)
#define CRC_CTRL_TOTR1 29 // TOTR[1]
// ================= 7-BIT CRC ===================
/** Constructor
* Enables CRC-clock
*/
FastCRC7::FastCRC7(){
SIM_SCGC6 |= SIM_SCGC6_CRC;
}
/** CRC 7
* MultiMediaCard interface
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint8_t FastCRC7::crc7(const uint8_t *data, const size_t datalen)
{
// poly=0x09 init=0x00 refin=false refout=false xorout=0x00 check=0x75
return (generic(0x09, 0, CRC_FLAG_NOREFLECT, data, datalen));
}
/** Update
* Call for subsequent calculations with previous seed
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint8_t FastCRC7::update(const uint8_t *data, const size_t datalen)
{
const uint8_t *src = data;
const uint8_t *target = src + datalen;
while (((uintptr_t)src & 0x03) != 0 && (src < target)) {
rCRC->CRC8_3 = *src++; //Write 8 BIT
}
while (src <= target-4) {
rCRC->CRC = *( uint32_t *)src; //Write 32 BIT
src += 4;
}
while (src < target) {
rCRC->CRC8_3 = *src++; //Write 8 Bit
}
//TODO: Check handling of CRC_CTRL_TOTR1 for other CRC7s
/*
if (rCRC->CTRL & (1<<CRC_CTRL_TOTR1))
return rCRC->CRC8 >> 1;
else
*/
return rCRC->CRC8_3 >> 1;
}
/** generic function for all 7-Bit CRCs
* @param polynom Polynom
* @param seed Seed
* @param flags Flags
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint8_t FastCRC7::generic(const uint8_t polynom, const uint8_t seed, const uint32_t flags, const uint8_t *data,const size_t datalen)
{
rCRC->CTRL = flags | (1<<CRC_CTRL_TCRC) | (1<<CRC_CTRL_WAS); // 32Bit Mode, Prepare to write seed(25)
rCRC->GPOLY = ((uint32_t)polynom)<<(24 + 1); // Set polynom
rCRC->CRC = ((uint32_t)seed<<(24 + 1)); // Write seed
rCRC->CTRL = flags | (1<<CRC_CTRL_TCRC); // Clear WAS Bit - prepare to write data
return update(data, datalen);
}
uint8_t FastCRC7::crc7_upd(const uint8_t *data, size_t datalen){return update(data, datalen);}
// ================= 8-BIT CRC ===================
/** Constructor
* Enables CRC-clock
*/
FastCRC8::FastCRC8(){
SIM_SCGC6 |= SIM_SCGC6_CRC;
}
/** SMBUS CRC
* aka CRC-8
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint8_t FastCRC8::smbus(const uint8_t *data, const size_t datalen)
{
// poly=0x07 init=0x00 refin=false refout=false xorout=0x00 check=0xf4
return generic(0x07, 0, CRC_FLAG_NOREFLECT, data, datalen);
}
/** MAXIM 8-Bit CRC
* equivalent to _crc_ibutton_update() in crc16.h from avr_libc
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint8_t FastCRC8::maxim(const uint8_t *data, const size_t datalen)
{
// poly=0x31 init=0x00 refin=true refout=true xorout=0x00 check=0xa1
return generic(0x31, 0, CRC_FLAG_REFLECT, data, datalen);
}
/** Update
* Call for subsequent calculations with previous seed
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint8_t FastCRC8::update(const uint8_t *data, const size_t datalen)
{
const uint8_t *src = data;
const uint8_t *target = src + datalen;
while (((uintptr_t)src & 0x03) != 0 && (src < target)) {
rCRC->CRC8_3 = *src++; //Write 8 BIT
}
while (src <= target-4) {
rCRC->CRC = *( uint32_t *)src; //Write 32 BIT
src += 4;
}
while (src < target) {
rCRC->CRC8_3 = *src++; //Write 8 Bit
}
if (rCRC->CTRL & (1<<CRC_CTRL_TOTR1))
return rCRC->CRC8;
else
return rCRC->CRC8_3;
}
/** generic function for all 8-Bit CRCs
* @param polynom Polynom
* @param seed Seed
* @param flags Flags
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint8_t FastCRC8::generic(const uint8_t polynom, const uint8_t seed, const uint32_t flags, const uint8_t *data,const size_t datalen)
{
rCRC->CTRL = flags | (1<<CRC_CTRL_TCRC) | (1<<CRC_CTRL_WAS); // 32Bit Mode, Prepare to write seed(25)
rCRC->GPOLY = ((uint32_t)polynom)<<24; // Set polynom
rCRC->CRC = ((uint32_t)seed<<24); // Write seed
rCRC->CTRL = flags | (1<<CRC_CTRL_TCRC); // Clear WAS Bit - prepare to write data
return update(data, datalen);
}
uint8_t FastCRC8::smbus_upd(const uint8_t *data, size_t datalen){return update(data, datalen);}
uint8_t FastCRC8::maxim_upd(const uint8_t *data, size_t datalen){return update(data, datalen);}
// ================= 14-BIT CRC ===================
/** Constructor
* Enables CRC-clock
*/
FastCRC14::FastCRC14(){
SIM_SCGC6 |= SIM_SCGC6_CRC;
}
/** CRC-14/DARC
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint16_t FastCRC14::darc(const uint8_t *data,const size_t datalen)
{
// poly=0x0805 init=0x0000 refin=true refout=true xorout=0x0000 check=0x082d residue=0x0000
return generic(0x0805, 0x0000, CRC_FLAG_REFLECT, data, datalen);
}
/** CRC-14/GSM
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint16_t FastCRC14::gsm(const uint8_t *data,const size_t datalen)
{
// poly=0x202d init=0x0000 refin=false refout=false xorout=0x3fff check=0x30ae residue=0x031e
return generic(0x202d, 0x0000, CRC_FLAG_NOREFLECT | CRC_FLAG_XOR, data, datalen);
}
/** CRC-14/ELORAN
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint16_t FastCRC14::eloran(const uint8_t *data,const size_t datalen)
{
// poly=0x60b1 init=0x0000 refin=false refout=false xorout=0x0000 check=0x38d1
return generic(0x60b1, 0x0, CRC_FLAG_NOREFLECT , data, datalen);
}
/** CRC-14/ft4 : TODO
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
/*
uint16_t FastCRC14::ft4(const uint8_t *data,const size_t datalen)
{
return generic(, , , data, datalen);
}
*/
/** Update
* Call for subsequent calculations with previous seed
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint16_t FastCRC14::update(const uint8_t *data, const size_t datalen)
{
const uint8_t *src = data;
const uint8_t *target = src + datalen;
while (((uintptr_t)src & 0x03) !=0 && (src < target)) {
rCRC->CRC8_3 = *src++; //Write 8 BIT
}
while (src <= target-4) {
rCRC->CRC = *( uint32_t *)src; //Write 32 BIT
src += 4;
}
while (src < target) {
rCRC->CRC8_3 = *src++; //Write 8 Bit
}
if (rCRC->CTRL & (1<<CRC_CTRL_TOTR1))
return rCRC->CRC16;
else
return rCRC->CRC >> (32 - 14);
}
/** generic function for all 14-Bit CRCs
* @param polynom Polynom
* @param seed Seed
* @param flags Flags
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint16_t FastCRC14::generic(const uint16_t polynom, const uint16_t seed, const uint32_t flags, const uint8_t *data, const size_t datalen)
{
rCRC->CTRL = flags | (1<<CRC_CTRL_TCRC) | (1<<CRC_CTRL_WAS);// 32-Bit Mode, prepare to write seed(25)
rCRC->GPOLY = ((uint32_t)polynom) << (32 - 14); // set polynom
rCRC->CRC = ((uint32_t)seed << (32 - 14) ); // this is the seed
rCRC->CTRL = flags | (1<<CRC_CTRL_TCRC); // Clear WAS Bit - prepare to write data
return update(data, datalen);
}
uint16_t FastCRC14::darc_upd(const uint8_t *data, size_t len) {return update(data, len);}
uint16_t FastCRC14::gsm_upd(const uint8_t *data, size_t len) {return update(data, len);}
uint16_t FastCRC14::eloran_upd(const uint8_t *data, size_t len) {return update(data, len);}
//uint16_t FastCRC14::ft4(const uint8_t *data, size_t len) {return update(data, len);}
// ================= 16-BIT CRC ===================
/** Constructor
* Enables CRC-clock
*/
FastCRC16::FastCRC16(){
SIM_SCGC6 |= SIM_SCGC6_CRC;
}
/** CCITT
* Alias "false CCITT"
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint16_t FastCRC16::ccitt(const uint8_t *data,const size_t datalen)
{
// poly=0x1021 init=0xffff refin=false refout=false xorout=0x0000 check=0x29b1
return generic(0x1021, 0XFFFF, CRC_FLAG_NOREFLECT, data, datalen);
}
/** MCRF4XX
* equivalent to _crc_ccitt_update() in crc16.h from avr_libc
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint16_t FastCRC16::mcrf4xx(const uint8_t *data,const size_t datalen)
{
// poly=0x1021 init=0xffff refin=true refout=true xorout=0x0000 check=0x6f91
return generic(0x1021, 0XFFFF, CRC_FLAG_REFLECT , data, datalen);
}
/** MODBUS
* equivalent to _crc_16_update() in crc16.h from avr_libc
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint16_t FastCRC16::modbus(const uint8_t *data, const size_t datalen)
{
// poly=0x8005 init=0xffff refin=true refout=true xorout=0x0000 check=0x4b37
return generic(0x8005, 0XFFFF, CRC_FLAG_REFLECT, data, datalen);
}
/** KERMIT
* Alias CRC-16/CCITT, CRC-16/CCITT-TRUE, CRC-CCITT
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint16_t FastCRC16::kermit(const uint8_t *data, const size_t datalen)
{
// poly=0x1021 init=0x0000 refin=true refout=true xorout=0x0000 check=0x2189
// sometimes byteswapped presentation of result
return generic(0x1021, 0x00, CRC_FLAG_REFLECT, data, datalen);
}
/** XMODEM
* Alias ZMODEM, CRC-16/ACORN
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint16_t FastCRC16::xmodem(const uint8_t *data, const size_t datalen)
{
//width=16 poly=0x1021 init=0x0000 refin=false refout=false xorout=0x0000 check=0x31c3
return generic(0x1021, 0, CRC_FLAG_NOREFLECT, data, datalen);
}
/** X25
* Alias CRC-16/IBM-SDLC, CRC-16/ISO-HDLC, CRC-B
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint16_t FastCRC16::x25(const uint8_t *data, const size_t datalen)
{
// poly=0x1021 init=0xffff refin=true refout=true xorout=0xffff check=0x906e
return generic(0x1021, 0XFFFF, CRC_FLAG_REFLECT | CRC_FLAG_XOR, data, datalen);
}
/** Update
* Call for subsequent calculations with previous seed
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint16_t FastCRC16::update(const uint8_t *data, const size_t datalen)
{
const uint8_t *src = data;
const uint8_t *target = src + datalen;
while (((uintptr_t)src & 0x03) !=0 && (src < target)) {
rCRC->CRC8_3 = *src++; //Write 8 BIT
}
while (src <= target-4) {
rCRC->CRC = *( uint32_t *)src; //Write 32 BIT
src += 4;
}
while (src < target) {
rCRC->CRC8_3 = *src++; //Write 8 Bit
}
if (rCRC->CTRL & (1<<CRC_CTRL_TOTR1))
return rCRC->CRC16;
else
return rCRC->CRC16_1;
}
/** generic function for all 16-Bit CRCs
* @param polynom Polynom
* @param seed Seed
* @param flags Flags
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint16_t FastCRC16::generic(const uint16_t polynom, const uint16_t seed, const uint32_t flags, const uint8_t *data, const size_t datalen)
{
rCRC->CTRL = flags | (1<<CRC_CTRL_TCRC) | (1<<CRC_CTRL_WAS);// 32-Bit Mode, prepare to write seed(25)
rCRC->GPOLY = ((uint32_t)polynom)<<16; // set polynom
rCRC->CRC = ((uint32_t)seed<<16); // this is the seed
rCRC->CTRL = flags | (1<<CRC_CTRL_TCRC); // Clear WAS Bit - prepare to write data
return update(data, datalen);
}
uint16_t FastCRC16::ccitt_upd(const uint8_t *data, size_t len) {return update(data, len);}
uint16_t FastCRC16::mcrf4xx_upd(const uint8_t *data, size_t len){return update(data, len);}
uint16_t FastCRC16::kermit_upd(const uint8_t *data, size_t len) {return update(data, len);}
uint16_t FastCRC16::modbus_upd(const uint8_t *data, size_t len) {return update(data, len);}
uint16_t FastCRC16::xmodem_upd(const uint8_t *data, size_t len) {return update(data, len);}
uint16_t FastCRC16::x25_upd(const uint8_t *data, size_t len) {return update(data, len);}
// ================= 32-BIT CRC ===================
/** Constructor
* Enables CRC-clock
*/
FastCRC32::FastCRC32(){
SIM_SCGC6 |= SIM_SCGC6_CRC;
}
/** CRC32
* Alias CRC-32/ADCCP, PKZIP, Ethernet, 802.3
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint32_t FastCRC32::crc32(const uint8_t *data, const size_t datalen)
{
// poly=0x04c11db7 init=0xffffffff refin=true refout=true xorout=0xffffffff check=0xcbf43926
return generic(0x04C11DB7L, 0XFFFFFFFFL, CRC_FLAG_REFLECT | CRC_FLAG_XOR, data, datalen);
}
/** CKSUM
* Alias CRC-32/POSIX
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint32_t FastCRC32::cksum(const uint8_t *data, const size_t datalen)
{
// width=32 poly=0x04c11db7 init=0x00000000 refin=false refout=false xorout=0xffffffff check=0x765e7680
return generic(0x04C11DB7L, 0, CRC_FLAG_NOREFLECT | CRC_FLAG_XOR, data, datalen);
}
/** Update
* Call for subsequent calculations with previous seed
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
//#pragma GCC diagnostic ignored "-Wpointer-arith"
uint32_t FastCRC32::update(const uint8_t *data, const size_t datalen)
{
const uint8_t *src = data;
const uint8_t *target = src + datalen;
while (((uintptr_t)src & 0x03) != 0 && (src < target)) {
rCRC->CRC8_3 = *src++; //Write 8 BIT
}
while (src <= target-4) {
rCRC->CRC = *( uint32_t *)src; //Write 32 BIT
src += 4;
}
while (src < target) {
rCRC->CRC8_3 = *src++; //Write 8 Bit
}
return rCRC->CRC;
}
/** generic function for all 32-Bit CRCs
* @param polynom Polynom
* @param seed Seed
* @param flags Flags
* @param data Pointer to Data
* @param datalen Length of Data
* @return CRC value
*/
uint32_t FastCRC32::generic(const uint32_t polynom, const uint32_t seed, const uint32_t flags, const uint8_t *data, const size_t datalen)
{
rCRC->CTRL = flags | (1<<CRC_CTRL_TCRC) | (1<<CRC_CTRL_WAS); // 32Bit Mode, prepare to write seed(25)
rCRC->GPOLY = polynom; // Set polynom
rCRC->CRC = seed; // This is the seed
rCRC->CTRL = flags | (1<<CRC_CTRL_TCRC); // Clear WAS Bit - prepare to write data
return update(data, datalen);
}
uint32_t FastCRC32::crc32_upd(const uint8_t *data, size_t len){return update(data, len);}
uint32_t FastCRC32::cksum_upd(const uint8_t *data, size_t len){return update(data, len);}
#endif // #if defined(KINETISK)