Tasmota/lib/lib_basic/IRremoteESP8266/src/ir_Kelvinator.cpp
2021-03-25 08:40:27 +01:00

526 lines
18 KiB
C++

// Copyright 2016 David Conran
/// @file
/// @brief Support for Kelvinator A/C protocols.
/// Code to emulate IR Kelvinator YALIF remote control unit, which should
/// control at least the following Kelvinator A/C units:
/// KSV26CRC, KSV26HRC, KSV35CRC, KSV35HRC, KSV53HRC, KSV62HRC, KSV70CRC,
/// KSV70HRC, KSV80HRC.
///
/// @note Unsupported:
/// - All Sleep modes.
/// - All Timer modes.
/// - "I Feel" button & mode.
/// - Energy Saving mode.
/// - Low Heat mode.
/// - Fahrenheit.
#include "ir_Kelvinator.h"
#include <algorithm>
#include <cstring>
#ifndef ARDUINO
#include <string>
#endif
#include "IRac.h"
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
// Constants
const uint16_t kKelvinatorTick = 85;
const uint16_t kKelvinatorHdrMarkTicks = 106;
const uint16_t kKelvinatorHdrMark = kKelvinatorHdrMarkTicks * kKelvinatorTick;
const uint16_t kKelvinatorHdrSpaceTicks = 53;
const uint16_t kKelvinatorHdrSpace = kKelvinatorHdrSpaceTicks * kKelvinatorTick;
const uint16_t kKelvinatorBitMarkTicks = 8;
const uint16_t kKelvinatorBitMark = kKelvinatorBitMarkTicks * kKelvinatorTick;
const uint16_t kKelvinatorOneSpaceTicks = 18;
const uint16_t kKelvinatorOneSpace = kKelvinatorOneSpaceTicks * kKelvinatorTick;
const uint16_t kKelvinatorZeroSpaceTicks = 6;
const uint16_t kKelvinatorZeroSpace =
kKelvinatorZeroSpaceTicks * kKelvinatorTick;
const uint16_t kKelvinatorGapSpaceTicks = 235;
const uint16_t kKelvinatorGapSpace = kKelvinatorGapSpaceTicks * kKelvinatorTick;
const uint8_t kKelvinatorCmdFooter = 2;
const uint8_t kKelvinatorCmdFooterBits = 3;
const uint8_t kKelvinatorChecksumStart = 10;
using irutils::addBoolToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addFanToString;
using irutils::addTempToString;
#if SEND_KELVINATOR
/// Send a Kelvinator A/C message.
/// Status: STABLE / Known working.
/// @param[in] data The message to be sent.
/// @param[in] nbytes The number of bytes of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
void IRsend::sendKelvinator(const unsigned char data[], const uint16_t nbytes,
const uint16_t repeat) {
if (nbytes < kKelvinatorStateLength)
return; // Not enough bytes to send a proper message.
for (uint16_t r = 0; r <= repeat; r++) {
// Command Block #1 (4 bytes)
sendGeneric(kKelvinatorHdrMark, kKelvinatorHdrSpace, kKelvinatorBitMark,
kKelvinatorOneSpace, kKelvinatorBitMark, kKelvinatorZeroSpace,
0, 0, // No Footer yet.
data, 4, 38, false, 0, 50);
// Send Footer for the command block (3 bits (b010))
sendGeneric(0, 0, // No Header
kKelvinatorBitMark, kKelvinatorOneSpace, kKelvinatorBitMark,
kKelvinatorZeroSpace, kKelvinatorBitMark, kKelvinatorGapSpace,
kKelvinatorCmdFooter, kKelvinatorCmdFooterBits, 38, false, 0,
50);
// Data Block #1 (4 bytes)
sendGeneric(0, 0, // No header
kKelvinatorBitMark, kKelvinatorOneSpace, kKelvinatorBitMark,
kKelvinatorZeroSpace, kKelvinatorBitMark,
kKelvinatorGapSpace * 2, data + 4, 4, 38, false, 0, 50);
// Command Block #2 (4 bytes)
sendGeneric(kKelvinatorHdrMark, kKelvinatorHdrSpace, kKelvinatorBitMark,
kKelvinatorOneSpace, kKelvinatorBitMark, kKelvinatorZeroSpace,
0, 0, // No Footer yet.
data + 8, 4, 38, false, 0, 50);
// Send Footer for the command block (3 bits (B010))
sendGeneric(0, 0, // No Header
kKelvinatorBitMark, kKelvinatorOneSpace, kKelvinatorBitMark,
kKelvinatorZeroSpace, kKelvinatorBitMark, kKelvinatorGapSpace,
kKelvinatorCmdFooter, kKelvinatorCmdFooterBits, 38, false, 0,
50);
// Data Block #2 (4 bytes)
sendGeneric(0, 0, // No header
kKelvinatorBitMark, kKelvinatorOneSpace, kKelvinatorBitMark,
kKelvinatorZeroSpace, kKelvinatorBitMark,
kKelvinatorGapSpace * 2, data + 12, 4, 38, false, 0, 50);
}
}
#endif // SEND_KELVINATOR
/// Class constructor
/// @param[in] pin GPIO to be used when sending.
/// @param[in] inverted Is the output signal to be inverted?
/// @param[in] use_modulation Is frequency modulation to be used?
IRKelvinatorAC::IRKelvinatorAC(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { stateReset(); }
/// Reset the internals of the object to a known good state.
void IRKelvinatorAC::stateReset(void) {
for (uint8_t i = 0; i < kKelvinatorStateLength; i++) _.raw[i] = 0x0;
_.raw[3] = 0x50;
_.raw[11] = 0x70;
}
/// Set up hardware to be able to send a message.
void IRKelvinatorAC::begin(void) { _irsend.begin(); }
/// Fix up any odd conditions for the current state.
void IRKelvinatorAC::fixup(void) {
// X-Fan mode is only valid in COOL or DRY modes.
if (_.Mode != kKelvinatorCool && _.Mode != kKelvinatorDry)
setXFan(false);
// Duplicate to the 2nd command chunk.
_.raw[8] = _.raw[0];
_.raw[9] = _.raw[1];
_.raw[10] = _.raw[2];
checksum(); // Calculate the checksums
}
#if SEND_KELVINATOR
/// Send the current internal state as an IR message.
/// @param[in] repeat Nr. of times the message will be repeated.
void IRKelvinatorAC::send(const uint16_t repeat) {
_irsend.sendKelvinator(getRaw(), kKelvinatorStateLength, repeat);
}
#endif // SEND_KELVINATOR
/// Get the raw state of the object, suitable to be sent with the appropriate
/// IRsend object method.
/// @return A PTR to the internal state.
uint8_t *IRKelvinatorAC::getRaw(void) {
fixup(); // Ensure correct settings before sending.
return _.raw;
}
/// Set the raw state of the object.
/// @param[in] new_code The raw state from the native IR message.
void IRKelvinatorAC::setRaw(const uint8_t new_code[]) {
std::memcpy(_.raw, new_code, kKelvinatorStateLength);
}
/// Calculate the checksum for a given block of state.
/// @param[in] block A pointer to a block to calc the checksum of.
/// @param[in] length Length of the block array to checksum.
/// @return The calculated checksum value.
/// @note Many Bothans died to bring us this information.
uint8_t IRKelvinatorAC::calcBlockChecksum(const uint8_t *block,
const uint16_t length) {
uint8_t sum = kKelvinatorChecksumStart;
// Sum the lower half of the first 4 bytes of this block.
for (uint8_t i = 0; i < 4 && i < length - 1; i++, block++)
sum += (*block & 0b1111);
// then sum the upper half of the next 3 bytes.
for (uint8_t i = 4; i < length - 1; i++, block++) sum += (*block >> 4);
// Trim it down to fit into the 4 bits allowed. i.e. Mod 16.
return sum & 0b1111;
}
/// Calculate the checksum for the internal state.
void IRKelvinatorAC::checksum(void) {
_.Sum1 = calcBlockChecksum(_.raw);
_.Sum2 = calcBlockChecksum(_.raw + 8);
}
/// Verify the checksum is valid for a given state.
/// @param[in] state The array to verify the checksum of.
/// @param[in] length The size of the state.
/// @return A boolean indicating if it is valid.
bool IRKelvinatorAC::validChecksum(const uint8_t state[],
const uint16_t length) {
for (uint16_t offset = 0; offset + 7 < length; offset += 8) {
// Top 4 bits of the last byte in the block is the block's checksum.
if (GETBITS8(state[offset + 7], kHighNibble, kNibbleSize) !=
calcBlockChecksum(state + offset))
return false;
}
return true;
}
/// Set the internal state to have the power on.
void IRKelvinatorAC::on(void) { setPower(true); }
/// Set the internal state to have the power off.
void IRKelvinatorAC::off(void) {setPower(false); }
/// Set the internal state to have the desired power.
/// @param[in] on The desired power state.
void IRKelvinatorAC::setPower(const bool on) {
_.Power = on;
}
/// Get the power setting from the internal state.
/// @return A boolean indicating if the power setting.
bool IRKelvinatorAC::getPower(void) const {
return _.Power;
}
/// Set the temperature setting.
/// @param[in] degrees The temperature in degrees celsius.
void IRKelvinatorAC::setTemp(const uint8_t degrees) {
uint8_t temp = std::max(kKelvinatorMinTemp, degrees);
temp = std::min(kKelvinatorMaxTemp, temp);
_.Temp = temp - kKelvinatorMinTemp;
}
/// Get the current temperature setting.
/// @return Get current setting for temp. in degrees celsius.
uint8_t IRKelvinatorAC::getTemp(void) const {
return _.Temp + kKelvinatorMinTemp;
}
/// Set the speed of the fan.
/// @param[in] speed 0 is auto, 1-5 is the speed
void IRKelvinatorAC::setFan(const uint8_t speed) {
uint8_t fan = std::min(kKelvinatorFanMax, speed); // Bounds check
// Only change things if we need to.
if (fan != _.Fan) {
// Set the basic fan values.
_.BasicFan = std::min(kKelvinatorBasicFanMax, fan);
// Set the advanced(?) fan value.
_.Fan = fan;
// Turbo mode is turned off if we change the fan settings.
setTurbo(false);
}
}
/// Get the current fan speed setting.
/// @return The current fan speed.
uint8_t IRKelvinatorAC::getFan(void) const {
return _.Fan;
}
/// Get the current operation mode setting.
/// @return The current operation mode.
uint8_t IRKelvinatorAC::getMode(void) const {
return _.Mode;
}
/// Set the desired operation mode.
/// @param[in] mode The desired operation mode.
void IRKelvinatorAC::setMode(const uint8_t mode) {
switch (mode) {
case kKelvinatorAuto:
case kKelvinatorDry:
// When the remote is set to Auto or Dry, it defaults to 25C and doesn't
// show it.
setTemp(kKelvinatorAutoTemp);
// FALL-THRU
case kKelvinatorHeat:
case kKelvinatorCool:
case kKelvinatorFan:
_.Mode = mode;
break;
default:
setTemp(kKelvinatorAutoTemp);
_.Mode = kKelvinatorAuto;
break;
}
}
/// Control the current vertical swing setting.
/// @param[in] on The desired setting.
void IRKelvinatorAC::setSwingVertical(const bool on) {
_.SwingV = on;
_.VentSwing = (on || _.SwingH);
}
/// Is the vertical swing setting on?
/// @return The current value.
bool IRKelvinatorAC::getSwingVertical(void) const {
return _.SwingV;
}
/// Control the current horizontal swing setting.
/// @param[in] on The desired setting.
void IRKelvinatorAC::setSwingHorizontal(const bool on) {
_.SwingH = on;
_.VentSwing = (on || _.SwingV);
}
/// Is the horizontal swing setting on?
/// @return The current value.
bool IRKelvinatorAC::getSwingHorizontal(void) const {
return _.SwingH;
}
/// Control the current Quiet setting.
/// @param[in] on The desired setting.
void IRKelvinatorAC::setQuiet(const bool on) {
_.Quiet = on;
}
/// Is the Quiet setting on?
/// @return The current value.
bool IRKelvinatorAC::getQuiet(void) const {
return _.Quiet;
}
/// Control the current Ion Filter setting.
/// @param[in] on The desired setting.
void IRKelvinatorAC::setIonFilter(const bool on) {
_.IonFilter = on;
}
/// Is the Ion Filter setting on?
/// @return The current value.
bool IRKelvinatorAC::getIonFilter(void) const {
return _.IonFilter;
}
/// Control the current Light setting.
/// i.e. The LED display on the A/C unit that shows the basic settings.
/// @param[in] on The desired setting.
void IRKelvinatorAC::setLight(const bool on) {
_.Light = on;
}
/// Is the Light (Display) setting on?
/// @return The current value.
bool IRKelvinatorAC::getLight(void) const {
return _.Light;
}
/// Control the current XFan setting.
/// This setting will cause the unit blow air after power off to dry out the
/// A/C device.
/// @note XFan mode is only valid in Cool or Dry mode.
/// @param[in] on The desired setting.
void IRKelvinatorAC::setXFan(const bool on) {
_.XFan = on;
}
/// Is the XFan setting on?
/// @return The current value.
bool IRKelvinatorAC::getXFan(void) const {
return _.XFan;
}
/// Control the current Turbo setting.
/// @note Turbo mode is turned off if the fan speed is changed.
/// @param[in] on The desired setting.
void IRKelvinatorAC::setTurbo(const bool on) {
_.Turbo = on;
}
/// Is the Turbo setting on?
/// @return The current value.
bool IRKelvinatorAC::getTurbo(void) const {
return _.Turbo;
}
/// Convert a standard A/C mode (stdAc::opmode_t) into it a native mode.
/// @param[in] mode A stdAc::opmode_t operation mode.
/// @return The native mode equivalent.
uint8_t IRKelvinatorAC::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kKelvinatorCool;
case stdAc::opmode_t::kHeat: return kKelvinatorHeat;
case stdAc::opmode_t::kDry: return kKelvinatorDry;
case stdAc::opmode_t::kFan: return kKelvinatorFan;
default: return kKelvinatorAuto;
}
}
/// Convert a native mode to it's stdAc::opmode_t equivalent.
/// @param[in] mode A native operating mode value.
/// @return The stdAc::opmode_t equivalent.
stdAc::opmode_t IRKelvinatorAC::toCommonMode(const uint8_t mode) {
switch (mode) {
case kKelvinatorCool: return stdAc::opmode_t::kCool;
case kKelvinatorHeat: return stdAc::opmode_t::kHeat;
case kKelvinatorDry: return stdAc::opmode_t::kDry;
case kKelvinatorFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
/// Convert a native fan speed to it's stdAc::fanspeed_t equivalent.
/// @param[in] speed A native fan speed value.
/// @return The stdAc::fanspeed_t equivalent.
stdAc::fanspeed_t IRKelvinatorAC::toCommonFanSpeed(const uint8_t speed) {
return (stdAc::fanspeed_t)speed;
}
/// Convert the internal A/C object state to it's stdAc::state_t equivalent.
/// @return A stdAc::state_t containing the current settings.
stdAc::state_t IRKelvinatorAC::toCommon(void) const {
stdAc::state_t result;
result.protocol = decode_type_t::KELVINATOR;
result.model = -1; // Unused.
result.power = _.Power;
result.mode = toCommonMode(_.Mode);
result.celsius = true;
result.degrees = getTemp();
result.fanspeed = toCommonFanSpeed(_.Fan);
result.swingv = _.SwingV ? stdAc::swingv_t::kAuto : stdAc::swingv_t::kOff;
result.swingh = _.SwingH ? stdAc::swingh_t::kAuto : stdAc::swingh_t::kOff;
result.quiet = _.Quiet;
result.turbo = _.Turbo;
result.light = _.Light;
result.filter = _.IonFilter;
result.clean = _.XFan;
// Not supported.
result.econo = false;
result.beep = false;
result.sleep = -1;
result.clock = -1;
return result;
}
/// Convert the internal settings into a human readable string.
/// @return A String.
String IRKelvinatorAC::toString(void) const {
String result = "";
result.reserve(160); // Reserve some heap for the string to reduce fragging.
result += addBoolToString(_.Power, kPowerStr, false);
result += addModeToString(_.Mode, kKelvinatorAuto, kKelvinatorCool,
kKelvinatorHeat, kKelvinatorDry, kKelvinatorFan);
result += addTempToString(getTemp());
result += addFanToString(_.Fan, kKelvinatorFanMax, kKelvinatorFanMin,
kKelvinatorFanAuto, kKelvinatorFanAuto,
kKelvinatorBasicFanMax);
result += addBoolToString(_.Turbo, kTurboStr);
result += addBoolToString(_.Quiet, kQuietStr);
result += addBoolToString(_.XFan, kXFanStr);
result += addBoolToString(_.IonFilter, kIonStr);
result += addBoolToString(_.Light, kLightStr);
result += addBoolToString(_.SwingH, kSwingHStr);
result += addBoolToString(_.SwingV, kSwingVStr);
return result;
}
#if DECODE_KELVINATOR
/// Decode the supplied Kelvinator message.
/// Status: STABLE / Known working.
/// @param[in,out] results Ptr to the data to decode & where to store the decode
/// result.
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return A boolean. True if it can decode it, false if it can't.
bool IRrecv::decodeKelvinator(decode_results *results, uint16_t offset,
const uint16_t nbits, const bool strict) {
if (results->rawlen <=
2 * (nbits + kKelvinatorCmdFooterBits) + (kHeader + kFooter + 1) * 2 - 1 +
offset)
return false; // Can't possibly be a valid Kelvinator message.
if (strict && nbits != kKelvinatorBits)
return false; // Not strictly a Kelvinator message.
// There are two messages back-to-back in a full Kelvinator IR message
// sequence.
int8_t pos = 0;
for (uint8_t s = 0; s < 2; s++) {
match_result_t data_result;
uint16_t used;
// Header + Data Block #1 (32 bits)
used = matchGeneric(results->rawbuf + offset, results->state + pos,
results->rawlen - offset, 32,
kKelvinatorHdrMark, kKelvinatorHdrSpace,
kKelvinatorBitMark, kKelvinatorOneSpace,
kKelvinatorBitMark, kKelvinatorZeroSpace,
0, 0, false,
_tolerance, kMarkExcess, false);
if (used == 0) return false;
offset += used;
pos += 4;
// Command data footer (3 bits, B010)
data_result = matchData(
&(results->rawbuf[offset]), kKelvinatorCmdFooterBits,
kKelvinatorBitMark, kKelvinatorOneSpace,
kKelvinatorBitMark, kKelvinatorZeroSpace,
_tolerance, kMarkExcess, false);
if (data_result.success == false) return false;
if (data_result.data != kKelvinatorCmdFooter) return false;
offset += data_result.used;
// Gap + Data (Options) (32 bits)
used = matchGeneric(results->rawbuf + offset, results->state + pos,
results->rawlen - offset, 32,
kKelvinatorBitMark, kKelvinatorGapSpace,
kKelvinatorBitMark, kKelvinatorOneSpace,
kKelvinatorBitMark, kKelvinatorZeroSpace,
kKelvinatorBitMark, kKelvinatorGapSpace * 2,
s > 0,
_tolerance, kMarkExcess, false);
if (used == 0) return false;
offset += used;
pos += 4;
}
// Compliance
if (strict) {
// Verify the message's checksum is correct.
if (!IRKelvinatorAC::validChecksum(results->state)) return false;
}
// Success
results->decode_type = decode_type_t::KELVINATOR;
results->bits = nbits;
// No need to record the state as we stored it as we decoded it.
// As we use result->state, we don't record value, address, or command as it
// is a union data type.
return true;
}
#endif // DECODE_KELVINATOR