Tasmota/lib/IRremoteESP8266-2.7.1/src/ir_Panasonic.cpp

858 lines
30 KiB
C++

// Copyright 2015 Kristian Lauszus
// Copyright 2017, 2018 David Conran
// Panasonic devices
#include "ir_Panasonic.h"
#include <algorithm>
#include <cstring>
#ifndef ARDUINO
#include <string>
#endif
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
// Panasonic protocol originally added by Kristian Lauszus from:
// https://github.com/z3t0/Arduino-IRremote
// (Thanks to zenwheel and other people at the original blog post)
//
// Panasonic A/C support add by crankyoldgit but heavily influenced by:
// https://github.com/ToniA/ESPEasy/blob/HeatpumpIR/lib/HeatpumpIR/PanasonicHeatpumpIR.cpp
// Panasonic A/C Clock & Timer support:
// Reverse Engineering by MikkelTb
// Code by crankyoldgit
// Panasonic A/C models supported:
// A/C Series/models:
// JKE, LKE, DKE, CKP, RKR, & NKE series. (In theory)
// CS-YW9MKD, CS-Z9RKR (confirmed)
// CS-ME14CKPG / CS-ME12CKPG / CS-ME10CKPG
// A/C Remotes:
// A75C3747 (confirmed)
// A75C3704
// A75C2311 (CKP)
// Constants
// Ref:
// http://www.remotecentral.com/cgi-bin/mboard/rc-pronto/thread.cgi?26152
const uint16_t kPanasonicTick = 432;
const uint16_t kPanasonicHdrMarkTicks = 8;
const uint16_t kPanasonicHdrMark = kPanasonicHdrMarkTicks * kPanasonicTick;
const uint16_t kPanasonicHdrSpaceTicks = 4;
const uint16_t kPanasonicHdrSpace = kPanasonicHdrSpaceTicks * kPanasonicTick;
const uint16_t kPanasonicBitMarkTicks = 1;
const uint16_t kPanasonicBitMark = kPanasonicBitMarkTicks * kPanasonicTick;
const uint16_t kPanasonicOneSpaceTicks = 3;
const uint16_t kPanasonicOneSpace = kPanasonicOneSpaceTicks * kPanasonicTick;
const uint16_t kPanasonicZeroSpaceTicks = 1;
const uint16_t kPanasonicZeroSpace = kPanasonicZeroSpaceTicks * kPanasonicTick;
const uint16_t kPanasonicMinCommandLengthTicks = 378;
const uint32_t kPanasonicMinCommandLength =
kPanasonicMinCommandLengthTicks * kPanasonicTick;
const uint16_t kPanasonicEndGap = 5000; // See issue #245
const uint16_t kPanasonicMinGapTicks =
kPanasonicMinCommandLengthTicks -
(kPanasonicHdrMarkTicks + kPanasonicHdrSpaceTicks +
kPanasonicBits * (kPanasonicBitMarkTicks + kPanasonicOneSpaceTicks) +
kPanasonicBitMarkTicks);
const uint32_t kPanasonicMinGap = kPanasonicMinGapTicks * kPanasonicTick;
const uint16_t kPanasonicAcSectionGap = 10000;
const uint16_t kPanasonicAcSection1Length = 8;
const uint32_t kPanasonicAcMessageGap = kDefaultMessageGap; // Just a guess.
using irutils::addBoolToString;
using irutils::addFanToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addModelToString;
using irutils::addTempToString;
using irutils::minsToString;
using irutils::setBit;
using irutils::setBits;
#if (SEND_PANASONIC || SEND_DENON)
// Send a Panasonic formatted message.
//
// Args:
// data: The message to be sent.
// nbits: The number of bits of the message to be sent. (kPanasonicBits).
// repeat: The number of times the command is to be repeated.
//
// Status: BETA / Should be working.
//
// Note:
// This protocol is a modified version of Kaseikyo.
void IRsend::sendPanasonic64(const uint64_t data, const uint16_t nbits,
const uint16_t repeat) {
sendGeneric(kPanasonicHdrMark, kPanasonicHdrSpace, kPanasonicBitMark,
kPanasonicOneSpace, kPanasonicBitMark, kPanasonicZeroSpace,
kPanasonicBitMark, kPanasonicMinGap, kPanasonicMinCommandLength,
data, nbits, kPanasonicFreq, true, repeat, 50);
}
// Send a Panasonic formatted message.
//
// Args:
// address: The manufacturer code.
// data: The data portion to be sent.
// nbits: The number of bits of the message to be sent. (kPanasonicBits).
// repeat: The number of times the command is to be repeated.
//
// Status: STABLE.
//
// Note:
// This protocol is a modified version of Kaseikyo.
void IRsend::sendPanasonic(const uint16_t address, const uint32_t data,
const uint16_t nbits, const uint16_t repeat) {
sendPanasonic64(((uint64_t)address << 32) | (uint64_t)data, nbits, repeat);
}
// Calculate the raw Panasonic data based on device, subdevice, & function.
//
// Args:
// manufacturer: A 16-bit manufacturer code. e.g. 0x4004 is Panasonic.
// device: An 8-bit code.
// subdevice: An 8-bit code.
// function: An 8-bit code.
// Returns:
// A raw uint64_t Panasonic message.
//
// Status: BETA / Should be working..
//
// Note:
// Panasonic 48-bit protocol is a modified version of Kaseikyo.
// Ref:
// http://www.remotecentral.com/cgi-bin/mboard/rc-pronto/thread.cgi?2615
uint64_t IRsend::encodePanasonic(const uint16_t manufacturer,
const uint8_t device,
const uint8_t subdevice,
const uint8_t function) {
uint8_t checksum = device ^ subdevice ^ function;
return (((uint64_t)manufacturer << 32) | ((uint64_t)device << 24) |
((uint64_t)subdevice << 16) | ((uint64_t)function << 8) | checksum);
}
#endif // (SEND_PANASONIC || SEND_DENON)
#if (DECODE_PANASONIC || DECODE_DENON)
// Decode the supplied Panasonic message.
//
// Args:
// results: Ptr to the data to decode and where to store the decode result.
// nbits: Nr. of data bits to expect.
// strict: Flag indicating if we should perform strict matching.
// Returns:
// boolean: True if it can decode it, false if it can't.
//
// Status: BETA / Should be working.
// Note:
// Panasonic 48-bit protocol is a modified version of Kaseikyo.
// Ref:
// http://www.remotecentral.com/cgi-bin/mboard/rc-pronto/thread.cgi?26152
// http://www.hifi-remote.com/wiki/index.php?title=Panasonic
bool IRrecv::decodePanasonic(decode_results *results, const uint16_t nbits,
const bool strict, const uint32_t manufacturer) {
if (strict && nbits != kPanasonicBits)
return false; // Request is out of spec.
uint64_t data = 0;
uint16_t offset = kStartOffset;
// Match Header + Data + Footer
if (!matchGeneric(results->rawbuf + offset, &data,
results->rawlen - offset, nbits,
kPanasonicHdrMark, kPanasonicHdrSpace,
kPanasonicBitMark, kPanasonicOneSpace,
kPanasonicBitMark, kPanasonicZeroSpace,
kPanasonicBitMark, kPanasonicEndGap, true)) return false;
// Compliance
uint32_t address = data >> 32;
uint32_t command = data;
if (strict) {
if (address != manufacturer) // Verify the Manufacturer code.
return false;
// Verify the checksum.
uint8_t checksumOrig = data;
uint8_t checksumCalc = (data >> 24) ^ (data >> 16) ^ (data >> 8);
if (checksumOrig != checksumCalc) return false;
}
// Success
results->value = data;
results->address = address;
results->command = command;
results->decode_type = decode_type_t::PANASONIC;
results->bits = nbits;
return true;
}
#endif // (DECODE_PANASONIC || DECODE_DENON)
#if SEND_PANASONIC_AC
// Send a Panasonic A/C message.
//
// Args:
// data: Contents of the message to be sent. (Guessing MSBF order)
// nbits: Nr. of bits of data to be sent. Typically kPanasonicAcBits.
// repeat: Nr. of additional times the message is to be sent.
//
// Status: Beta / Appears to work with real device(s).
//:
// Panasonic A/C models supported:
// A/C Series/models:
// JKE, LKE, DKE, CKP, RKR, & NKE series.
// CS-YW9MKD
// A/C Remotes:
// A75C3747
// A75C3704
//
void IRsend::sendPanasonicAC(const uint8_t data[], const uint16_t nbytes,
const uint16_t repeat) {
if (nbytes < kPanasonicAcSection1Length) return;
for (uint16_t r = 0; r <= repeat; r++) {
// First section. (8 bytes)
sendGeneric(kPanasonicHdrMark, kPanasonicHdrSpace, kPanasonicBitMark,
kPanasonicOneSpace, kPanasonicBitMark, kPanasonicZeroSpace,
kPanasonicBitMark, kPanasonicAcSectionGap, data,
kPanasonicAcSection1Length, kPanasonicFreq, false, 0, 50);
// First section. (The rest of the data bytes)
sendGeneric(kPanasonicHdrMark, kPanasonicHdrSpace, kPanasonicBitMark,
kPanasonicOneSpace, kPanasonicBitMark, kPanasonicZeroSpace,
kPanasonicBitMark, kPanasonicAcMessageGap,
data + kPanasonicAcSection1Length,
nbytes - kPanasonicAcSection1Length, kPanasonicFreq, false, 0,
50);
}
}
#endif // SEND_PANASONIC_AC
IRPanasonicAc::IRPanasonicAc(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { this->stateReset(); }
void IRPanasonicAc::stateReset(void) {
memcpy(remote_state, kPanasonicKnownGoodState, kPanasonicAcStateLength);
_temp = 25; // An initial saved desired temp. Completely made up.
_swingh = kPanasonicAcSwingHMiddle; // A similar made up value for H Swing.
}
void IRPanasonicAc::begin(void) { _irsend.begin(); }
// Verify the checksum is valid for a given state.
// Args:
// state: The array to verify the checksum of.
// length: The size of the state.
// Returns:
// A boolean.
bool IRPanasonicAc::validChecksum(uint8_t state[], const uint16_t length) {
if (length < 2) return false; // 1 byte of data can't have a checksum.
return (state[length - 1] ==
sumBytes(state, length - 1, kPanasonicAcChecksumInit));
}
uint8_t IRPanasonicAc::calcChecksum(uint8_t state[], const uint16_t length) {
return sumBytes(state, length - 1, kPanasonicAcChecksumInit);
}
void IRPanasonicAc::fixChecksum(const uint16_t length) {
remote_state[length - 1] = this->calcChecksum(remote_state, length);
}
#if SEND_PANASONIC_AC
void IRPanasonicAc::send(const uint16_t repeat) {
_irsend.sendPanasonicAC(getRaw(), kPanasonicAcStateLength, repeat);
}
#endif // SEND_PANASONIC_AC
void IRPanasonicAc::setModel(const panasonic_ac_remote_model_t model) {
switch (model) {
case panasonic_ac_remote_model_t::kPanasonicDke:
case panasonic_ac_remote_model_t::kPanasonicJke:
case panasonic_ac_remote_model_t::kPanasonicLke:
case panasonic_ac_remote_model_t::kPanasonicNke:
case panasonic_ac_remote_model_t::kPanasonicCkp:
case panasonic_ac_remote_model_t::kPanasonicRkr: break;
// Only proceed if we know what to do.
default: return;
}
// clear & set the various bits and bytes.
remote_state[13] &= 0xF0;
remote_state[17] = 0x00;
remote_state[21] &= 0b11101111;
remote_state[23] = 0x81;
remote_state[25] = 0x00;
switch (model) {
case kPanasonicLke:
remote_state[13] |= 0x02;
remote_state[17] = 0x06;
break;
case kPanasonicDke:
remote_state[23] = 0x01;
remote_state[25] = 0x06;
// Has to be done last as setSwingHorizontal has model check built-in
this->setSwingHorizontal(_swingh);
break;
case kPanasonicNke:
remote_state[17] = 0x06;
break;
case kPanasonicJke:
break;
case kPanasonicCkp:
remote_state[21] |= 0x10;
remote_state[23] = 0x01;
break;
case kPanasonicRkr:
remote_state[13] |= 0x08;
remote_state[23] = 0x89;
default:
break;
}
}
panasonic_ac_remote_model_t IRPanasonicAc::getModel(void) {
if (remote_state[23] == 0x89) return kPanasonicRkr;
if (remote_state[17] == 0x00) {
if ((remote_state[21] & 0x10) && (remote_state[23] & 0x01))
return panasonic_ac_remote_model_t::kPanasonicCkp;
if (remote_state[23] & 0x80)
return panasonic_ac_remote_model_t::kPanasonicJke;
}
if (remote_state[17] == 0x06 && (remote_state[13] & 0x0F) == 0x02)
return panasonic_ac_remote_model_t::kPanasonicLke;
if (remote_state[23] == 0x01)
return panasonic_ac_remote_model_t::kPanasonicDke;
if (remote_state[17] == 0x06)
return panasonic_ac_remote_model_t::kPanasonicNke;
return panasonic_ac_remote_model_t::kPanasonicUnknown; // Default
}
uint8_t *IRPanasonicAc::getRaw(void) {
this->fixChecksum();
return remote_state;
}
void IRPanasonicAc::setRaw(const uint8_t state[]) {
memcpy(remote_state, state, kPanasonicAcStateLength);
}
// Control the power state of the A/C unit.
//
// For CKP models, the remote has no memory of the power state the A/C unit
// should be in. For those models setting this on/true will toggle the power
// state of the Panasonic A/C unit with the next meessage.
// e.g. If the A/C unit is already on, setPower(true) will turn it off.
// If the A/C unit is already off, setPower(true) will turn it on.
// setPower(false) will leave the A/C power state as it was.
//
// For all other models, setPower(true) should set the internal state to
// turn it on, and setPower(false) should turn it off.
void IRPanasonicAc::setPower(const bool on) {
setBit(&remote_state[13], kPanasonicAcPowerOffset, on);
}
// Return the A/C power state of the remote.
// Except for CKP models, where it returns if the power state will be toggled
// on the A/C unit when the next message is sent.
bool IRPanasonicAc::getPower(void) {
return GETBIT8(remote_state[13], kPanasonicAcPowerOffset);
}
void IRPanasonicAc::on(void) { setPower(true); }
void IRPanasonicAc::off(void) { setPower(false); }
uint8_t IRPanasonicAc::getMode(void) {
return GETBITS8(remote_state[13], kHighNibble, kModeBitsSize);
}
void IRPanasonicAc::setMode(const uint8_t desired) {
uint8_t mode = kPanasonicAcAuto; // Default to Auto mode.
switch (desired) {
case kPanasonicAcFan:
// Allegedly Fan mode has a temperature of 27.
this->setTemp(kPanasonicAcFanModeTemp, false);
mode = desired;
break;
case kPanasonicAcAuto:
case kPanasonicAcCool:
case kPanasonicAcHeat:
case kPanasonicAcDry:
mode = desired;
// Set the temp to the saved temp, just incase our previous mode was Fan.
this->setTemp(_temp);
break;
}
remote_state[13] &= 0x0F; // Clear the previous mode bits.
setBits(&remote_state[13], kHighNibble, kModeBitsSize, mode);
}
uint8_t IRPanasonicAc::getTemp(void) {
return GETBITS8(remote_state[14], kPanasonicAcTempOffset,
kPanasonicAcTempSize);
}
// Set the desitred temperature in Celsius.
// Args:
// celsius: The temperature to set the A/C unit to.
// remember: A boolean flag for the class to remember the temperature.
//
// Automatically safely limits the temp to the operating range supported.
void IRPanasonicAc::setTemp(const uint8_t celsius, const bool remember) {
uint8_t temperature;
temperature = std::max(celsius, kPanasonicAcMinTemp);
temperature = std::min(temperature, kPanasonicAcMaxTemp);
if (remember) _temp = temperature;
setBits(&remote_state[14], kPanasonicAcTempOffset, kPanasonicAcTempSize,
temperature);
}
uint8_t IRPanasonicAc::getSwingVertical(void) {
return GETBITS8(remote_state[16], kLowNibble, kNibbleSize);
}
void IRPanasonicAc::setSwingVertical(const uint8_t desired_elevation) {
uint8_t elevation = desired_elevation;
if (elevation != kPanasonicAcSwingVAuto) {
elevation = std::max(elevation, kPanasonicAcSwingVHighest);
elevation = std::min(elevation, kPanasonicAcSwingVLowest);
}
setBits(&remote_state[16], kLowNibble, kNibbleSize, elevation);
}
uint8_t IRPanasonicAc::getSwingHorizontal(void) {
return GETBITS8(remote_state[17], kLowNibble, kNibbleSize);
}
void IRPanasonicAc::setSwingHorizontal(const uint8_t desired_direction) {
switch (desired_direction) {
case kPanasonicAcSwingHAuto:
case kPanasonicAcSwingHMiddle:
case kPanasonicAcSwingHFullLeft:
case kPanasonicAcSwingHLeft:
case kPanasonicAcSwingHRight:
case kPanasonicAcSwingHFullRight: break;
// Ignore anything that isn't valid.
default: return;
}
_swingh = desired_direction; // Store the direction for later.
uint8_t direction = desired_direction;
switch (this->getModel()) {
case kPanasonicDke:
case kPanasonicRkr:
break;
case kPanasonicNke:
case kPanasonicLke:
direction = kPanasonicAcSwingHMiddle;
break;
default: // Ignore everything else.
return;
}
setBits(&remote_state[17], kLowNibble, kNibbleSize, direction);
}
void IRPanasonicAc::setFan(const uint8_t speed) {
switch (speed) {
case kPanasonicAcFanMin:
case kPanasonicAcFanMed:
case kPanasonicAcFanMax:
case kPanasonicAcFanAuto:
setBits(&remote_state[16], kHighNibble, kNibbleSize,
speed + kPanasonicAcFanDelta);
break;
default: setFan(kPanasonicAcFanAuto);
}
}
uint8_t IRPanasonicAc::getFan(void) {
return GETBITS8(remote_state[16], kHighNibble, kNibbleSize) -
kPanasonicAcFanDelta;
}
bool IRPanasonicAc::getQuiet(void) {
switch (this->getModel()) {
case kPanasonicRkr:
case kPanasonicCkp:
return GETBIT8(remote_state[21], kPanasonicAcQuietCkpOffset);
default:
return GETBIT8(remote_state[21], kPanasonicAcQuietOffset);
}
}
void IRPanasonicAc::setQuiet(const bool on) {
uint8_t offset;
switch (this->getModel()) {
case kPanasonicRkr:
case kPanasonicCkp: offset = kPanasonicAcQuietCkpOffset; break;
default: offset = kPanasonicAcQuietOffset;
}
if (on) this->setPowerful(false); // Powerful is mutually exclusive.
setBit(&remote_state[21], offset, on);
}
bool IRPanasonicAc::getPowerful(void) {
switch (this->getModel()) {
case kPanasonicRkr:
case kPanasonicCkp:
return GETBIT8(remote_state[21], kPanasonicAcPowerfulCkpOffset);
default:
return GETBIT8(remote_state[21], kPanasonicAcPowerfulOffset);
}
}
void IRPanasonicAc::setPowerful(const bool on) {
uint8_t offset;
switch (this->getModel()) {
case kPanasonicRkr:
case kPanasonicCkp: offset = kPanasonicAcPowerfulCkpOffset; break;
default: offset = kPanasonicAcPowerfulOffset;
}
if (on) this->setQuiet(false); // Quiet is mutually exclusive.
setBit(&remote_state[21], offset, on);
}
// Convert standard (military/24hr) time to nr. of minutes since midnight.
uint16_t IRPanasonicAc::encodeTime(const uint8_t hours, const uint8_t mins) {
return std::min(hours, (uint8_t)23) * 60 + std::min(mins, (uint8_t)59);
}
uint16_t IRPanasonicAc::_getTime(const uint8_t ptr[]) {
uint16_t result = (GETBITS8(
ptr[1], kLowNibble, kPanasonicAcTimeOverflowSize) <<
(kPanasonicAcTimeSize - kPanasonicAcTimeOverflowSize)) + ptr[0];
if (result == kPanasonicAcTimeSpecial) return 0;
return result;
}
uint16_t IRPanasonicAc::getClock(void) { return _getTime(&remote_state[24]); }
void IRPanasonicAc::_setTime(uint8_t * const ptr,
const uint16_t mins_since_midnight,
const bool round_down) {
uint16_t corrected = std::min(mins_since_midnight, kPanasonicAcTimeMax);
if (round_down) corrected -= corrected % 10;
if (mins_since_midnight == kPanasonicAcTimeSpecial)
corrected = kPanasonicAcTimeSpecial;
ptr[0] = corrected;
setBits(&ptr[1], kLowNibble, kPanasonicAcTimeOverflowSize,
corrected >> (kPanasonicAcTimeSize - kPanasonicAcTimeOverflowSize));
}
void IRPanasonicAc::setClock(const uint16_t mins_since_midnight) {
_setTime(&remote_state[24], mins_since_midnight, false);
}
uint16_t IRPanasonicAc::getOnTimer(void) { return _getTime(&remote_state[18]); }
void IRPanasonicAc::setOnTimer(const uint16_t mins_since_midnight,
const bool enable) {
// Set the timer flag.
setBit(&remote_state[13], kPanasonicAcOnTimerOffset, enable);
// Store the time.
_setTime(&remote_state[18], mins_since_midnight, true);
}
void IRPanasonicAc::cancelOnTimer(void) { this->setOnTimer(0, false); }
bool IRPanasonicAc::isOnTimerEnabled(void) {
return GETBIT8(remote_state[13], kPanasonicAcOnTimerOffset);
}
uint16_t IRPanasonicAc::getOffTimer(void) {
uint16_t result = (GETBITS8(remote_state[20], 0, 7) << kNibbleSize) |
GETBITS8(remote_state[19], kHighNibble, kNibbleSize);
if (result == kPanasonicAcTimeSpecial) return 0;
return result;
}
void IRPanasonicAc::setOffTimer(const uint16_t mins_since_midnight,
const bool enable) {
// Ensure its on a 10 minute boundary and no overflow.
uint16_t corrected = std::min(mins_since_midnight, kPanasonicAcTimeMax);
corrected -= corrected % 10;
if (mins_since_midnight == kPanasonicAcTimeSpecial)
corrected = kPanasonicAcTimeSpecial;
// Set the timer flag.
setBit(&remote_state[13], kPanasonicAcOffTimerOffset, enable);
// Store the time.
setBits(&remote_state[19], kHighNibble, kNibbleSize, corrected);
setBits(&remote_state[20], 0, 7, corrected >> kNibbleSize);
}
void IRPanasonicAc::cancelOffTimer(void) { this->setOffTimer(0, false); }
bool IRPanasonicAc::isOffTimerEnabled(void) {
return GETBIT8(remote_state[13], kPanasonicAcOffTimerOffset);
}
// Convert a standard A/C mode into its native mode.
uint8_t IRPanasonicAc::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kPanasonicAcCool;
case stdAc::opmode_t::kHeat: return kPanasonicAcHeat;
case stdAc::opmode_t::kDry: return kPanasonicAcDry;
case stdAc::opmode_t::kFan: return kPanasonicAcFan;
default: return kPanasonicAcAuto;
}
}
// Convert a standard A/C Fan speed into its native fan speed.
uint8_t IRPanasonicAc::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin: return kPanasonicAcFanMin;
case stdAc::fanspeed_t::kLow: return kPanasonicAcFanMin + 1;
case stdAc::fanspeed_t::kMedium: return kPanasonicAcFanMin + 2;
case stdAc::fanspeed_t::kHigh: return kPanasonicAcFanMin + 3;
case stdAc::fanspeed_t::kMax: return kPanasonicAcFanMax;
default: return kPanasonicAcFanAuto;
}
}
// Convert a standard A/C vertical swing into its native setting.
uint8_t IRPanasonicAc::convertSwingV(const stdAc::swingv_t position) {
switch (position) {
case stdAc::swingv_t::kHighest:
case stdAc::swingv_t::kHigh:
case stdAc::swingv_t::kMiddle:
case stdAc::swingv_t::kLow:
case stdAc::swingv_t::kLowest: return (uint8_t)position;
default: return kPanasonicAcSwingVAuto;
}
}
// Convert a standard A/C horizontal swing into its native setting.
uint8_t IRPanasonicAc::convertSwingH(const stdAc::swingh_t position) {
switch (position) {
case stdAc::swingh_t::kLeftMax: return kPanasonicAcSwingHFullLeft;
case stdAc::swingh_t::kLeft: return kPanasonicAcSwingHLeft;
case stdAc::swingh_t::kMiddle: return kPanasonicAcSwingHMiddle;
case stdAc::swingh_t::kRight: return kPanasonicAcSwingHRight;
case stdAc::swingh_t::kRightMax: return kPanasonicAcSwingHFullRight;
default: return kPanasonicAcSwingHAuto;
}
}
// Convert a native mode to it's common equivalent.
stdAc::opmode_t IRPanasonicAc::toCommonMode(const uint8_t mode) {
switch (mode) {
case kPanasonicAcCool: return stdAc::opmode_t::kCool;
case kPanasonicAcHeat: return stdAc::opmode_t::kHeat;
case kPanasonicAcDry: return stdAc::opmode_t::kDry;
case kPanasonicAcFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
// Convert a native fan speed to it's common equivalent.
stdAc::fanspeed_t IRPanasonicAc::toCommonFanSpeed(const uint8_t spd) {
switch (spd) {
case kPanasonicAcFanMax: return stdAc::fanspeed_t::kMax;
case kPanasonicAcFanMin + 3: return stdAc::fanspeed_t::kHigh;
case kPanasonicAcFanMin + 2: return stdAc::fanspeed_t::kMedium;
case kPanasonicAcFanMin + 1: return stdAc::fanspeed_t::kLow;
case kPanasonicAcFanMin: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
// Convert a native vertical swing to it's common equivalent.
stdAc::swingh_t IRPanasonicAc::toCommonSwingH(const uint8_t pos) {
switch (pos) {
case kPanasonicAcSwingHFullLeft: return stdAc::swingh_t::kLeftMax;
case kPanasonicAcSwingHLeft: return stdAc::swingh_t::kLeft;
case kPanasonicAcSwingHMiddle: return stdAc::swingh_t::kMiddle;
case kPanasonicAcSwingHRight: return stdAc::swingh_t::kRight;
case kPanasonicAcSwingHFullRight: return stdAc::swingh_t::kRightMax;
default: return stdAc::swingh_t::kAuto;
}
}
// Convert a native vertical swing to it's common equivalent.
stdAc::swingv_t IRPanasonicAc::toCommonSwingV(const uint8_t pos) {
if (pos >= kPanasonicAcSwingVHighest && pos <= kPanasonicAcSwingVLowest)
return (stdAc::swingv_t)pos;
else
return stdAc::swingv_t::kAuto;
}
// Convert the A/C state to it's common equivalent.
stdAc::state_t IRPanasonicAc::toCommon(void) {
stdAc::state_t result;
result.protocol = decode_type_t::PANASONIC_AC;
result.model = this->getModel();
result.power = this->getPower();
result.mode = this->toCommonMode(this->getMode());
result.celsius = true;
result.degrees = this->getTemp();
result.fanspeed = this->toCommonFanSpeed(this->getFan());
result.swingv = this->toCommonSwingV(this->getSwingVertical());
result.swingh = this->toCommonSwingH(this->getSwingHorizontal());
result.quiet = this->getQuiet();
result.turbo = this->getPowerful();
// Not supported.
result.econo = false;
result.clean = false;
result.filter = false;
result.light = false;
result.beep = false;
result.sleep = -1;
result.clock = -1;
return result;
}
// Convert the internal state into a human readable string.
String IRPanasonicAc::toString(void) {
String result = "";
result.reserve(180); // Reserve some heap for the string to reduce fragging.
result += addModelToString(decode_type_t::PANASONIC_AC, getModel(), false);
result += addBoolToString(getPower(), kPowerStr);
result += addModeToString(getMode(), kPanasonicAcAuto, kPanasonicAcCool,
kPanasonicAcHeat, kPanasonicAcDry, kPanasonicAcFan);
result += addTempToString(getTemp());
result += addFanToString(getFan(), kPanasonicAcFanMax, kPanasonicAcFanMin,
kPanasonicAcFanAuto, kPanasonicAcFanAuto,
kPanasonicAcFanMed);
result += addIntToString(getSwingVertical(), kSwingVStr);
result += kSpaceLBraceStr;
switch (getSwingVertical()) {
case kPanasonicAcSwingVAuto:
result += kAutoStr;
break;
case kPanasonicAcSwingVHighest:
result += kHighestStr;
break;
case kPanasonicAcSwingVHigh:
result += kHighStr;
break;
case kPanasonicAcSwingVMiddle:
result += kMiddleStr;
break;
case kPanasonicAcSwingVLow:
result += kLowStr;
break;
case kPanasonicAcSwingVLowest:
result += kLowestStr;
break;
default:
result += kUnknownStr;
break;
}
result += ')';
switch (getModel()) {
case kPanasonicJke:
case kPanasonicCkp:
break; // No Horizontal Swing support.
default:
result += addIntToString(getSwingHorizontal(), kSwingHStr);
result += kSpaceLBraceStr;
switch (getSwingHorizontal()) {
case kPanasonicAcSwingHAuto:
result += kAutoStr;
break;
case kPanasonicAcSwingHFullLeft:
result += kMaxLeftStr;
break;
case kPanasonicAcSwingHLeft:
result += kLeftStr;
break;
case kPanasonicAcSwingHMiddle:
result += kMiddleStr;
break;
case kPanasonicAcSwingHFullRight:
result += kMaxRightStr;
break;
case kPanasonicAcSwingHRight:
result += kRightStr;
break;
default:
result += kUnknownStr;
}
result += ')';
}
result += addBoolToString(getQuiet(), kQuietStr);
result += addBoolToString(getPowerful(), kPowerfulStr);
result += addLabeledString(minsToString(getClock()), kClockStr);
result += addLabeledString(
isOnTimerEnabled() ? minsToString(getOnTimer()) : kOffStr,
kOnTimerStr);
result += addLabeledString(
isOffTimerEnabled() ? minsToString(getOffTimer()) : kOffStr,
kOffTimerStr);
return result;
}
#if DECODE_PANASONIC_AC
// Decode the supplied Panasonic AC message.
//
// Args:
// results: Ptr to the data to decode and where to store the decode result.
// nbits: The number of data bits to expect. Typically kPanasonicAcBits.
// strict: Flag indicating if we should perform strict matching.
// Returns:
// boolean: True if it can decode it, false if it can't.
//
// Status: Beta / Appears to work with real device(s).
//
// Panasonic A/C models supported:
// A/C Series/models:
// JKE, LKE, DKE, & NKE series.
// CS-YW9MKD
// A/C Remotes:
// A75C3747 (Confirmed)
// A75C3704
bool IRrecv::decodePanasonicAC(decode_results *results, const uint16_t nbits,
const bool strict) {
uint8_t min_nr_of_messages = 1;
if (strict) {
if (nbits != kPanasonicAcBits && nbits != kPanasonicAcShortBits)
return false; // Not strictly a PANASONIC_AC message.
}
if (results->rawlen <
min_nr_of_messages * (2 * nbits + kHeader + kFooter) - 1)
return false; // Can't possibly be a valid PANASONIC_AC message.
uint16_t offset = kStartOffset;
// Match Header + Data #1 + Footer
uint16_t used;
used = matchGeneric(results->rawbuf + offset, results->state,
results->rawlen - offset, kPanasonicAcSection1Length * 8,
kPanasonicHdrMark, kPanasonicHdrSpace,
kPanasonicBitMark, kPanasonicOneSpace,
kPanasonicBitMark, kPanasonicZeroSpace,
kPanasonicBitMark, kPanasonicAcSectionGap, false,
kPanasonicAcTolerance, kPanasonicAcExcess, false);
if (!used) return false;
offset += used;
// Match Header + Data #2 + Footer
if (!matchGeneric(results->rawbuf + offset,
results->state + kPanasonicAcSection1Length,
results->rawlen - offset,
nbits - kPanasonicAcSection1Length * 8,
kPanasonicHdrMark, kPanasonicHdrSpace,
kPanasonicBitMark, kPanasonicOneSpace,
kPanasonicBitMark, kPanasonicZeroSpace,
kPanasonicBitMark, kPanasonicAcMessageGap, true,
kPanasonicAcTolerance, kPanasonicAcExcess, false))
return false;
// Compliance
if (strict) {
// Check the signatures of the section blocks. They start with 0x02& 0x20.
if (results->state[0] != 0x02 || results->state[1] != 0x20 ||
results->state[8] != 0x02 || results->state[9] != 0x20)
return false;
if (!IRPanasonicAc::validChecksum(results->state, nbits / 8)) return false;
}
// Success
results->decode_type = decode_type_t::PANASONIC_AC;
results->bits = nbits;
return true;
}
#endif // DECODE_PANASONIC_AC