Tasmota/lib/lib_basic/IRremoteESP8266/src/ir_Truma.cpp
2021-05-29 14:48:27 +02:00

341 lines
12 KiB
C++

// Copyright 2021 David Conran (crankyoldgit)
/// @file
/// @brief Support for Truma protocol.
/// This protocol uses mark length bit encoding.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1440
/// @see https://docs.google.com/spreadsheets/d/1k-RHu0vSIB6IweiTZSa3Rxy3Z_qPUtqwcqot8uXVO6I/edit?usp=sharing
#include "ir_Truma.h"
#include <algorithm>
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
using irutils::addBoolToString;
using irutils::addFanToString;
using irutils::addModeToString;
using irutils::addTempToString;
// Constants
const uint16_t kTrumaLdrMark = 20200;
const uint16_t kTrumaLdrSpace = 1000;
const uint16_t kTrumaHdrMark = 1800;
const uint16_t kTrumaSpace = 630;
const uint16_t kTrumaOneMark = 600;
const uint16_t kTrumaZeroMark = 1200;
const uint16_t kTrumaFooterMark = kTrumaOneMark;
const uint32_t kTrumaGap = kDefaultMessageGap; // Just a guess.
#if SEND_TRUMA
/// Send a Truma formatted message.
/// Status: STABLE / Confirmed working.
/// @param[in] data The message to be sent.
/// @param[in] nbits The bit size of the message being sent.
/// @param[in] repeat The number of times the message is to be repeated.
void IRsend::sendTruma(const uint64_t data, const uint16_t nbits,
const uint16_t repeat) {
for (uint16_t r = 0; r <= repeat; r++) {
enableIROut(38000);
mark(kTrumaLdrMark);
space(kTrumaLdrSpace);
sendGeneric(kTrumaHdrMark, kTrumaSpace, // Header
kTrumaOneMark, kTrumaSpace, // Data
kTrumaZeroMark, kTrumaSpace,
kTrumaFooterMark, kTrumaGap, // Footer
data, nbits, 38, false, 0, kDutyDefault);
}
}
#endif // SEND_TRUMA
#if DECODE_TRUMA
/// Decode the supplied Truma message.
/// Status: STABLE / Confirmed working with real device.
/// @param[in,out] results Ptr to the data to decode & where to store the decode
/// result.
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect. Typically kTrumaBits.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return A boolean. True if it can decode it, false if it can't.
bool IRrecv::decodeTruma(decode_results *results, uint16_t offset,
const uint16_t nbits, const bool strict) {
if (results->rawlen < 2 * nbits + kHeader - 1 + offset)
return false; // Can't possibly be a valid message.
if (strict && nbits != kTrumaBits)
return false; // Not strictly a message.
// Leader.
if (!matchMark(results->rawbuf[offset++], kTrumaLdrMark)) return false;
if (!matchSpace(results->rawbuf[offset++], kTrumaLdrSpace)) return false;
uint64_t data = 0;
uint16_t used;
used = matchGeneric(results->rawbuf + offset, &data,
results->rawlen - offset, nbits,
kTrumaHdrMark, kTrumaSpace,
kTrumaOneMark, kTrumaSpace,
kTrumaZeroMark, kTrumaSpace,
kTrumaFooterMark, kTrumaGap,
true, kUseDefTol, kMarkExcess, false);
if (!used) return false;
// Compliance
if (strict && !IRTrumaAc::validChecksum(data)) return false; // Checksum.
// Success
results->value = data;
results->decode_type = decode_type_t::TRUMA;
results->bits = nbits;
results->address = 0;
results->command = 0;
return true;
}
#endif // DECODE_TRUMA
/// Class constructor
/// @param[in] pin GPIO to be used when sending.
/// @param[in] inverted Is the output signal to be inverted?
/// @param[in] use_modulation Is frequency modulation to be used?
IRTrumaAc::IRTrumaAc(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { stateReset(); }
/// Set up hardware to be able to send a message.
void IRTrumaAc::begin(void) { _irsend.begin(); }
#if SEND_TRUMA
/// Send the current internal state as an IR message.
/// @param[in] repeat Nr. of times the message will be repeated.
void IRTrumaAc::send(const uint16_t repeat) {
_irsend.sendTruma(getRaw(), kTrumaBits, repeat);
}
#endif // SEND_TRUMA
/// Calculate the checksum for a given state.
/// @param[in] state The value to calc the checksum of.
/// @return The calculated checksum value.
uint8_t IRTrumaAc::calcChecksum(const uint64_t state) {
uint8_t sum = kTrumaChecksumInit;
uint64_t to_checksum = state;
for (uint16_t i = 8; i < kTrumaBits; i += 8) {
sum += (to_checksum & 0xFF);
to_checksum >>= 8;
}
return sum;
}
/// Verify the checksum is valid for a given state.
/// @param[in] state The value to verify the checksum of.
/// @return true, if the state has a valid checksum. Otherwise, false.
bool IRTrumaAc::validChecksum(const uint64_t state) {
TrumaProtocol state_copy;
state_copy.raw = state;
return state_copy.Sum == calcChecksum(state);
}
/// Calculate & set the checksum for the current internal state of the remote.
void IRTrumaAc::checksum(void) { _.Sum = calcChecksum(_.raw); }
/// Reset the state of the remote to a known good state/sequence.
void IRTrumaAc::stateReset(void) { setRaw(kTrumaDefaultState); }
/// Get a copy of the internal state/code for this protocol.
/// @return The code for this protocol based on the current internal state.
uint64_t IRTrumaAc::getRaw(void) {
checksum();
return _.raw;
}
/// Set the internal state from a valid code for this protocol.
/// @param[in] state A valid code for this protocol.
void IRTrumaAc::setRaw(const uint64_t state) {
_.raw = state;
_lastfan = _.Fan;
_lastmode = _.Mode;
}
/// Set the requested power state of the A/C to on.
void IRTrumaAc::on(void) { setPower(true); }
/// Set the requested power state of the A/C to off.
void IRTrumaAc::off(void) { setPower(false); }
/// Change the power setting.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRTrumaAc::setPower(const bool on) {
_.PowerOff = !on;
_.Mode = on ? _lastmode : kTrumaFan; // Off temporarily sets mode to Fan.
}
/// Get the value of the current power setting.
/// @return true, the setting is on. false, the setting is off.
bool IRTrumaAc::getPower(void) const { return !_.PowerOff; }
/// Set the speed of the fan.
/// @param[in] speed The desired setting.
void IRTrumaAc::setFan(const uint8_t speed) {
switch (speed) {
case kTrumaFanHigh:
case kTrumaFanMed:
case kTrumaFanLow:
_lastfan = speed; // Never allow _lastfan to be Quiet.
_.Fan = speed;
break;
case kTrumaFanQuiet:
if (_.Mode == kTrumaCool) _.Fan = kTrumaFanQuiet; // Only in Cool mode.
break;
default:
setFan(kTrumaFanHigh);
}
}
/// Get the current fan speed setting.
/// @return The current fan speed/mode.
uint8_t IRTrumaAc::getFan(void) const { return _.Fan; }
/// Set the operating mode of the A/C.
/// @param[in] mode The desired operating mode.
void IRTrumaAc::setMode(const uint8_t mode) {
switch (mode) {
case kTrumaAuto:
case kTrumaFan:
if (getQuiet()) setFan(kTrumaFanHigh); // Can only have quiet in Cool.
// FALL THRU
case kTrumaCool:
_.Mode = _.PowerOff ? kTrumaFan : mode; // When Off, only set Fan mode.
_lastmode = mode;
break;
default:
setMode(kTrumaAuto);
}
}
/// Get the operating mode setting of the A/C.
/// @return The current operating mode setting.
uint8_t IRTrumaAc::getMode(void) const { return _.Mode; }
/// Set the temperature.
/// @param[in] celsius The temperature in degrees celsius.
void IRTrumaAc::setTemp(const uint8_t celsius) {
uint8_t temp = std::max(celsius, kTrumaMinTemp);
temp = std::min(temp, kTrumaMaxTemp);
_.Temp = temp - kTrumaTempOffset;
}
/// Get the current temperature setting.
/// @return The current setting for temp. in degrees celsius.
uint8_t IRTrumaAc::getTemp(void) const { return _.Temp + kTrumaTempOffset; }
/// Change the Quiet setting.
/// @param[in] on true, the setting is on. false, the setting is off.
/// @note Quiet is only available in Cool mode.
void IRTrumaAc::setQuiet(const bool on) {
if (on && _.Mode == kTrumaCool)
setFan(kTrumaFanQuiet);
else
setFan(_lastfan);
}
/// Get the value of the current quiet setting.
/// @return true, the setting is on. false, the setting is off.
bool IRTrumaAc::getQuiet(void) const { return _.Fan == kTrumaFanQuiet; }
/// Convert a stdAc::opmode_t enum into its native mode.
/// @param[in] mode The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRTrumaAc::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kTrumaCool;
case stdAc::opmode_t::kFan: return kTrumaFan;
default: return kTrumaAuto;
}
}
/// Convert a stdAc::fanspeed_t enum into it's native speed.
/// @param[in] speed The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRTrumaAc::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin: return kTrumaFanQuiet;
case stdAc::fanspeed_t::kLow: return kTrumaFanLow;
case stdAc::fanspeed_t::kMedium: return kTrumaFanMed;
default: return kTrumaFanHigh;
}
}
/// Convert a native mode into its stdAc equivalent.
/// @param[in] mode The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::opmode_t IRTrumaAc::toCommonMode(const uint8_t mode) {
switch (mode) {
case kTrumaCool: return stdAc::opmode_t::kCool;
case kTrumaFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
/// Convert a native fan speed into its stdAc equivalent.
/// @param[in] spd The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::fanspeed_t IRTrumaAc::toCommonFanSpeed(const uint8_t spd) {
switch (spd) {
case kTrumaFanMed: return stdAc::fanspeed_t::kMedium;
case kTrumaFanLow: return stdAc::fanspeed_t::kLow;
case kTrumaFanQuiet: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kHigh;
}
}
/// Convert the current internal state into its stdAc::state_t equivalent.
/// @return The stdAc equivalent of the native settings.
stdAc::state_t IRTrumaAc::toCommon(void) const {
stdAc::state_t result;
result.protocol = decode_type_t::TRUMA;
result.model = -1; // Not supported.
// Do we have enough current state info to override any previous state?
// i.e. Was the class just setRaw()'ed with a short "swing" message.
// This should enables us to also ignore the Swing msg's special 17C setting.
result.power = getPower();
result.mode = toCommonMode(getMode());
result.celsius = true;
result.degrees = getTemp();
result.fanspeed = toCommonFanSpeed(getFan());
result.quiet = getQuiet();
// Not supported.
result.turbo = false;
result.econo = false;
result.light = false;
result.filter = false;
result.swingv = stdAc::swingv_t::kOff;
result.swingh = stdAc::swingh_t::kOff;
result.clean = false;
result.beep = false;
result.sleep = -1;
result.clock = -1;
return result;
}
/// Convert the current internal state into a human readable string.
/// @return A human readable string.
String IRTrumaAc::toString(void) const {
String result = "";
result.reserve(80);
result += addBoolToString(getPower(), kPowerStr, false);
if (getPower()) // Only show the Operating Mode if the unit is on.
result += addModeToString(_.Mode, kTrumaAuto, kTrumaCool,
kTrumaAuto, kTrumaAuto, kTrumaFan);
result += addTempToString(getTemp());
result += addFanToString(_.Fan, kTrumaFanHigh, kTrumaFanLow, kTrumaFanHigh,
kTrumaFanQuiet, kTrumaFanMed);
result += addBoolToString(getQuiet(), kQuietStr);
return result;
}