Tasmota/lib/lib_basic/IRremoteESP8266/src/ir_Goodweather.cpp
2021-03-25 08:40:27 +01:00

498 lines
17 KiB
C++

// Copyright 2019 ribeirodanielf
// Copyright 2019 David Conran
/// @file
/// @brief Support for Goodweather compatible HVAC protocols.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/697
#include "ir_Goodweather.h"
#include <algorithm>
#ifndef ARDUINO
#include <string>
#endif
#include "IRrecv.h"
#include "IRremoteESP8266.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
using irutils::addBoolToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addFanToString;
using irutils::addTempToString;
#if SEND_GOODWEATHER
/// Send a Goodweather HVAC formatted message.
/// Status: BETA / Needs testing on real device.
/// @param[in] data The message to be sent.
/// @param[in] nbits The number of bits of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
void IRsend::sendGoodweather(const uint64_t data, const uint16_t nbits,
const uint16_t repeat) {
if (nbits != kGoodweatherBits)
return; // Wrong nr. of bits to send a proper message.
// Set IR carrier frequency
enableIROut(38);
for (uint16_t r = 0; r <= repeat; r++) {
// Header
mark(kGoodweatherHdrMark);
space(kGoodweatherHdrSpace);
// Data
for (int16_t i = 0; i < nbits; i += 8) {
uint16_t chunk = (data >> i) & 0xFF; // Grab a byte at a time.
chunk = (~chunk) << 8 | chunk; // Prepend a inverted copy of the byte.
sendData(kGoodweatherBitMark, kGoodweatherOneSpace,
kGoodweatherBitMark, kGoodweatherZeroSpace,
chunk, 16, false);
}
// Footer
mark(kGoodweatherBitMark);
space(kGoodweatherHdrSpace);
mark(kGoodweatherBitMark);
space(kDefaultMessageGap);
}
}
#endif // SEND_GOODWEATHER
/// Class constructor
/// @param[in] pin GPIO to be used when sending.
/// @param[in] inverted Is the output signal to be inverted?
/// @param[in] use_modulation Is frequency modulation to be used?
IRGoodweatherAc::IRGoodweatherAc(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { stateReset(); }
/// Reset the internal state to a fixed known good state.
void IRGoodweatherAc::stateReset(void) { _.raw = kGoodweatherStateInit; }
/// Set up hardware to be able to send a message.
void IRGoodweatherAc::begin(void) { _irsend.begin(); }
#if SEND_GOODWEATHER
/// Send the current internal state as an IR message.
/// @param[in] repeat Nr. of times the message will be repeated.
void IRGoodweatherAc::send(const uint16_t repeat) {
_irsend.sendGoodweather(getRaw(), kGoodweatherBits, repeat);
}
#endif // SEND_GOODWEATHER
/// Get a copy of the internal state as a valid code for this protocol.
/// @return A valid code for this protocol based on the current internal state.
uint64_t IRGoodweatherAc::getRaw(void) { return _.raw; }
/// Set the internal state from a valid code for this protocol.
/// @param[in] state A valid code for this protocol.
void IRGoodweatherAc::setRaw(const uint64_t state) { _.raw = state; }
/// Change the power setting to On.
void IRGoodweatherAc::on(void) { setPower(true); }
/// Change the power setting to Off.
void IRGoodweatherAc::off(void) { setPower(false); }
/// Change the power setting.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRGoodweatherAc::setPower(const bool on) {
_.Command = kGoodweatherCmdPower;
_.Power = on;
}
/// Get the value of the current power setting.
/// @return true, the setting is on. false, the setting is off.
bool IRGoodweatherAc::getPower(void) const {
return _.Power;
}
/// Set the temperature.
/// @param[in] temp The temperature in degrees celsius.
void IRGoodweatherAc::setTemp(const uint8_t temp) {
uint8_t new_temp = std::max(kGoodweatherTempMin, temp);
new_temp = std::min(kGoodweatherTempMax, new_temp);
if (new_temp > getTemp()) _.Command = kGoodweatherCmdUpTemp;
if (new_temp < getTemp()) _.Command = kGoodweatherCmdDownTemp;
_.Temp = new_temp - kGoodweatherTempMin;
}
/// Get the current temperature setting.
/// @return The current setting for temp. in degrees celsius.
uint8_t IRGoodweatherAc::getTemp(void) const {
return _.Temp + kGoodweatherTempMin;
}
/// Set the speed of the fan.
/// @param[in] speed The desired setting.
void IRGoodweatherAc::setFan(const uint8_t speed) {
_.Command = kGoodweatherCmdFan;
switch (speed) {
case kGoodweatherFanAuto:
case kGoodweatherFanLow:
case kGoodweatherFanMed:
case kGoodweatherFanHigh:
_.Fan = speed;
break;
default:
_.Fan = kGoodweatherFanAuto;
}
}
/// Get the current fan speed setting.
/// @return The current fan speed.
uint8_t IRGoodweatherAc::getFan(void) const {
return _.Fan;
}
/// Set the operating mode of the A/C.
/// @param[in] mode The desired operating mode.
void IRGoodweatherAc::setMode(const uint8_t mode) {
_.Command = kGoodweatherCmdMode;
switch (mode) {
case kGoodweatherAuto:
case kGoodweatherDry:
case kGoodweatherCool:
case kGoodweatherFan:
case kGoodweatherHeat:
_.Mode = mode;
break;
default:
_.Mode = kGoodweatherAuto;
}
}
/// Get the operating mode setting of the A/C.
/// @return The current operating mode setting.
uint8_t IRGoodweatherAc::getMode(void) const {
return _.Mode;
}
/// Set the Light (LED) Toggle setting of the A/C.
/// @param[in] toggle true, the setting is on. false, the setting is off.
void IRGoodweatherAc::setLight(const bool toggle) {
_.Command = kGoodweatherCmdLight;
_.Light = toggle;
}
/// Get the Light (LED) Toggle setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRGoodweatherAc::getLight(void) const {
return _.Light;
}
/// Set the Sleep Toggle setting of the A/C.
/// @param[in] toggle true, the setting is on. false, the setting is off.
void IRGoodweatherAc::setSleep(const bool toggle) {
_.Command = kGoodweatherCmdSleep;
_.Sleep = toggle;
}
/// Get the Sleep Toggle setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRGoodweatherAc::getSleep(void) const {
return _.Sleep;
}
/// Set the Turbo Toggle setting of the A/C.
/// @param[in] toggle true, the setting is on. false, the setting is off.
void IRGoodweatherAc::setTurbo(const bool toggle) {
_.Command = kGoodweatherCmdTurbo;
_.Turbo = toggle;
}
/// Get the Turbo Toggle setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRGoodweatherAc::getTurbo(void) const {
return _.Turbo;
}
/// Set the Vertical Swing speed of the A/C.
/// @param[in] speed The speed to set the swing to.
void IRGoodweatherAc::setSwing(const uint8_t speed) {
_.Command = kGoodweatherCmdSwing;
switch (speed) {
case kGoodweatherSwingOff:
case kGoodweatherSwingSlow:
case kGoodweatherSwingFast:
_.Swing = speed;
break;
default:
_.Swing = kGoodweatherSwingOff;
}
}
/// Get the Vertical Swing speed of the A/C.
/// @return The native swing speed setting.
uint8_t IRGoodweatherAc::getSwing(void) const {
return _.Swing;
}
/// Set the remote Command type/button pressed.
/// @param[in] cmd The command/button that was issued/pressed.
void IRGoodweatherAc::setCommand(const uint8_t cmd) {
if (cmd <= kGoodweatherCmdLight)
_.Command = cmd;
}
/// Get the Command type/button pressed from the current settings
/// @return The command/button that was issued/pressed.
uint8_t IRGoodweatherAc::getCommand(void) const {
return _.Command;
}
/// Convert a stdAc::opmode_t enum into its native mode.
/// @param[in] mode The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRGoodweatherAc::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kGoodweatherCool;
case stdAc::opmode_t::kHeat: return kGoodweatherHeat;
case stdAc::opmode_t::kDry: return kGoodweatherDry;
case stdAc::opmode_t::kFan: return kGoodweatherFan;
default: return kGoodweatherAuto;
}
}
/// Convert a stdAc::fanspeed_t enum into it's native speed.
/// @param[in] speed The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRGoodweatherAc::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin:
case stdAc::fanspeed_t::kLow: return kGoodweatherFanLow;
case stdAc::fanspeed_t::kMedium: return kGoodweatherFanMed;
case stdAc::fanspeed_t::kHigh:
case stdAc::fanspeed_t::kMax: return kGoodweatherFanHigh;
default: return kGoodweatherFanAuto;
}
}
/// Convert a stdAc::swingv_t enum into it's native setting.
/// @param[in] swingv The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRGoodweatherAc::convertSwingV(const stdAc::swingv_t swingv) {
switch (swingv) {
case stdAc::swingv_t::kHighest:
case stdAc::swingv_t::kHigh:
case stdAc::swingv_t::kMiddle: return kGoodweatherSwingFast;
case stdAc::swingv_t::kLow:
case stdAc::swingv_t::kLowest:
case stdAc::swingv_t::kAuto: return kGoodweatherSwingSlow;
default: return kGoodweatherSwingOff;
}
}
/// Convert a native mode into its stdAc equivalent.
/// @param[in] mode The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::opmode_t IRGoodweatherAc::toCommonMode(const uint8_t mode) {
switch (mode) {
case kGoodweatherCool: return stdAc::opmode_t::kCool;
case kGoodweatherHeat: return stdAc::opmode_t::kHeat;
case kGoodweatherDry: return stdAc::opmode_t::kDry;
case kGoodweatherFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
/// Convert a native fan speed into its stdAc equivalent.
/// @param[in] speed The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::fanspeed_t IRGoodweatherAc::toCommonFanSpeed(const uint8_t speed) {
switch (speed) {
case kGoodweatherFanHigh: return stdAc::fanspeed_t::kMax;
case kGoodweatherFanMed: return stdAc::fanspeed_t::kMedium;
case kGoodweatherFanLow: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
/// Convert the current internal state into its stdAc::state_t equivalent.
/// @return The stdAc equivalent of the native settings.
stdAc::state_t IRGoodweatherAc::toCommon(void) const {
stdAc::state_t result;
result.protocol = decode_type_t::GOODWEATHER;
result.power = _.Power;
result.mode = toCommonMode(_.Mode);
result.celsius = true;
result.degrees = getTemp();
result.fanspeed = toCommonFanSpeed(_.Fan);
result.swingv = (_.Swing == kGoodweatherSwingOff ?
stdAc::swingv_t::kOff : stdAc::swingv_t::kAuto);
result.turbo = _.Turbo;
result.light = _.Light;
result.sleep = _.Sleep ? 0: -1;
// Not supported.
result.model = -1;
result.swingh = stdAc::swingh_t::kOff;
result.quiet = false;
result.econo = false;
result.filter = false;
result.clean = false;
result.beep = false;
result.clock = -1;
return result;
}
/// Convert the current internal state into a human readable string.
/// @return A human readable string.
String IRGoodweatherAc::toString(void) const {
String result = "";
result.reserve(150); // Reserve some heap for the string to reduce fragging.
result += addBoolToString(_.Power, kPowerStr, false);
result += addModeToString(_.Mode, kGoodweatherAuto, kGoodweatherCool,
kGoodweatherHeat, kGoodweatherDry, kGoodweatherFan);
result += addTempToString(getTemp());
result += addFanToString(_.Fan, kGoodweatherFanHigh, kGoodweatherFanLow,
kGoodweatherFanAuto, kGoodweatherFanAuto,
kGoodweatherFanMed);
result += addLabeledString(_.Turbo ? kToggleStr : "-", kTurboStr);
result += addLabeledString(_.Light ? kToggleStr : "-", kLightStr);
result += addLabeledString(_.Sleep ? kToggleStr : "-", kSleepStr);
result += addIntToString(_.Swing, kSwingStr);
result += kSpaceLBraceStr;
switch (_.Swing) {
case kGoodweatherSwingFast:
result += kFastStr;
break;
case kGoodweatherSwingSlow:
result += kSlowStr;
break;
case kGoodweatherSwingOff:
result += kOffStr;
break;
default:
result += kUnknownStr;
}
result += ')';
result += addIntToString(_.Command, kCommandStr);
result += kSpaceLBraceStr;
switch (_.Command) {
case kGoodweatherCmdPower:
result += kPowerStr;
break;
case kGoodweatherCmdMode:
result += kModeStr;
break;
case kGoodweatherCmdUpTemp:
result += kTempUpStr;
break;
case kGoodweatherCmdDownTemp:
result += kTempDownStr;
break;
case kGoodweatherCmdSwing:
result += kSwingStr;
break;
case kGoodweatherCmdFan:
result += kFanStr;
break;
case kGoodweatherCmdTimer:
result += kTimerStr;
break;
case kGoodweatherCmdAirFlow:
result += kAirFlowStr;
break;
case kGoodweatherCmdHold:
result += kHoldStr;
break;
case kGoodweatherCmdSleep:
result += kSleepStr;
break;
case kGoodweatherCmdTurbo:
result += kTurboStr;
break;
case kGoodweatherCmdLight:
result += kLightStr;
break;
default:
result += kUnknownStr;
}
result += ')';
return result;
}
#if DECODE_GOODWEATHER
/// Decode the supplied Goodweather message.
/// Status: BETA / Probably works.
/// @param[in,out] results Ptr to the data to decode & where to store the decode
/// result.
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return A boolean. True if it can decode it, false if it can't.
bool IRrecv::decodeGoodweather(decode_results* results, uint16_t offset,
const uint16_t nbits,
const bool strict) {
if (results->rawlen < 2 * (2 * nbits) + kHeader + 2 * kFooter - 1 + offset)
return false; // Can't possibly be a valid Goodweather message.
if (strict && nbits != kGoodweatherBits)
return false; // Not strictly a Goodweather message.
uint64_t dataSoFar = 0;
uint16_t dataBitsSoFar = 0;
match_result_t data_result;
// Header
if (!matchMark(results->rawbuf[offset++], kGoodweatherHdrMark)) return false;
if (!matchSpace(results->rawbuf[offset++], kGoodweatherHdrSpace))
return false;
// Data
for (; offset <= results->rawlen - 32 && dataBitsSoFar < nbits;
dataBitsSoFar += 8) {
DPRINT("DEBUG: Attempting Byte #");
DPRINTLN(dataBitsSoFar / 8);
// Read in a byte at a time.
// Normal first.
data_result = matchData(&(results->rawbuf[offset]), 8,
kGoodweatherBitMark, kGoodweatherOneSpace,
kGoodweatherBitMark, kGoodweatherZeroSpace,
_tolerance + kGoodweatherExtraTolerance,
kMarkExcess, false);
if (data_result.success == false) return false;
DPRINTLN("DEBUG: Normal byte read okay.");
offset += data_result.used;
uint8_t data = (uint8_t)data_result.data;
// Then inverted.
data_result = matchData(&(results->rawbuf[offset]), 8,
kGoodweatherBitMark, kGoodweatherOneSpace,
kGoodweatherBitMark, kGoodweatherZeroSpace,
_tolerance + kGoodweatherExtraTolerance,
kMarkExcess, false);
if (data_result.success == false) return false;
DPRINTLN("DEBUG: Inverted byte read okay.");
offset += data_result.used;
uint8_t inverted = (uint8_t)data_result.data;
DPRINT("DEBUG: data = ");
DPRINTLN((uint16_t)data);
DPRINT("DEBUG: inverted = ");
DPRINTLN((uint16_t)inverted);
if (data != (inverted ^ 0xFF)) return false; // Data integrity failed.
dataSoFar |= (uint64_t)data << dataBitsSoFar;
}
// Footer.
if (!matchMark(results->rawbuf[offset++], kGoodweatherBitMark,
_tolerance + kGoodweatherExtraTolerance)) return false;
if (!matchSpace(results->rawbuf[offset++], kGoodweatherHdrSpace))
return false;
if (!matchMark(results->rawbuf[offset++], kGoodweatherBitMark,
_tolerance + kGoodweatherExtraTolerance)) return false;
if (offset <= results->rawlen &&
!matchAtLeast(results->rawbuf[offset], kGoodweatherHdrSpace))
return false;
// Compliance
if (strict && (dataBitsSoFar != kGoodweatherBits)) return false;
// Success
results->decode_type = decode_type_t::GOODWEATHER;
results->bits = dataBitsSoFar;
results->value = dataSoFar;
results->address = 0;
results->command = 0;
return true;
}
#endif // DECODE_GOODWEATHER