Tasmota/lib/lib_basic/IRremoteESP8266/src/ir_Gree.cpp
2021-03-25 08:40:27 +01:00

715 lines
24 KiB
C++

// Copyright 2017 Ville Skyttä (scop)
// Copyright 2017, 2018 David Conran
/// @file
/// @brief Support for Gree A/C protocols.
/// @see https://github.com/ToniA/arduino-heatpumpir/blob/master/GreeHeatpumpIR.h
#include "ir_Gree.h"
#include <algorithm>
#include <cstring>
#ifndef ARDUINO
#include <string>
#endif
#include "IRrecv.h"
#include "IRremoteESP8266.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
#include "ir_Kelvinator.h"
// Constants
const uint16_t kGreeHdrMark = 9000;
const uint16_t kGreeHdrSpace = 4500; ///< See #684 & real example in unit tests
const uint16_t kGreeBitMark = 620;
const uint16_t kGreeOneSpace = 1600;
const uint16_t kGreeZeroSpace = 540;
const uint16_t kGreeMsgSpace = 19000;
const uint8_t kGreeBlockFooter = 0b010;
const uint8_t kGreeBlockFooterBits = 3;
using irutils::addBoolToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addModelToString;
using irutils::addFanToString;
using irutils::addTempToString;
using irutils::minsToString;
#if SEND_GREE
/// Send a Gree Heat Pump formatted message.
/// Status: STABLE / Working.
/// @param[in] data The message to be sent.
/// @param[in] nbytes The number of bytes of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
void IRsend::sendGree(const uint8_t data[], const uint16_t nbytes,
const uint16_t repeat) {
if (nbytes < kGreeStateLength)
return; // Not enough bytes to send a proper message.
for (uint16_t r = 0; r <= repeat; r++) {
// Block #1
sendGeneric(kGreeHdrMark, kGreeHdrSpace, kGreeBitMark, kGreeOneSpace,
kGreeBitMark, kGreeZeroSpace, 0, 0, // No Footer.
data, 4, 38, false, 0, 50);
// Footer #1
sendGeneric(0, 0, // No Header
kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace,
kGreeBitMark, kGreeMsgSpace, 0b010, 3, 38, false, 0, 50);
// Block #2
sendGeneric(0, 0, // No Header for Block #2
kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace,
kGreeBitMark, kGreeMsgSpace, data + 4, nbytes - 4, 38, false, 0,
50);
}
}
/// Send a Gree Heat Pump formatted message.
/// Status: STABLE / Working.
/// @param[in] data The message to be sent.
/// @param[in] nbits The number of bits of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
void IRsend::sendGree(const uint64_t data, const uint16_t nbits,
const uint16_t repeat) {
if (nbits != kGreeBits)
return; // Wrong nr. of bits to send a proper message.
// Set IR carrier frequency
enableIROut(38);
for (uint16_t r = 0; r <= repeat; r++) {
// Header
mark(kGreeHdrMark);
space(kGreeHdrSpace);
// Data
for (int16_t i = 8; i <= nbits; i += 8) {
sendData(kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace,
(data >> (nbits - i)) & 0xFF, 8, false);
if (i == nbits / 2) {
// Send the mid-message Footer.
sendData(kGreeBitMark, kGreeOneSpace, kGreeBitMark, kGreeZeroSpace,
0b010, 3);
mark(kGreeBitMark);
space(kGreeMsgSpace);
}
}
// Footer
mark(kGreeBitMark);
space(kGreeMsgSpace);
}
}
#endif // SEND_GREE
/// Class constructor
/// @param[in] pin GPIO to be used when sending.
/// @param[in] model The enum of the model to be emulated.
/// @param[in] inverted Is the output signal to be inverted?
/// @param[in] use_modulation Is frequency modulation to be used?
IRGreeAC::IRGreeAC(const uint16_t pin, const gree_ac_remote_model_t model,
const bool inverted, const bool use_modulation)
: _irsend(pin, inverted, use_modulation) {
stateReset();
setModel(model);
}
/// Reset the internal state to a fixed known good state.
void IRGreeAC::stateReset(void) {
// This resets to a known-good state to Power Off, Fan Auto, Mode Auto, 25C.
std::memset(_.remote_state, 0, sizeof _.remote_state);
_.Temp = 9; // _.remote_state[1] = 0x09;
_.Light = true; // _.remote_state[2] = 0x20;
_.unknown1 = 5; // _.remote_state[3] = 0x50;
_.unknown2 = 4; // _.remote_state[5] = 0x20;
}
/// Fix up the internal state so it is correct.
/// @note Internal use only.
void IRGreeAC::fixup(void) {
setPower(getPower()); // Redo the power bits as they differ between models.
checksum(); // Calculate the checksums
}
/// Set up hardware to be able to send a message.
void IRGreeAC::begin(void) { _irsend.begin(); }
#if SEND_GREE
/// Send the current internal state as an IR message.
/// @param[in] repeat Nr. of times the message will be repeated.
void IRGreeAC::send(const uint16_t repeat) {
_irsend.sendGree(getRaw(), kGreeStateLength, repeat);
}
#endif // SEND_GREE
/// Get a PTR to the internal state/code for this protocol.
/// @return PTR to a code for this protocol based on the current internal state.
uint8_t* IRGreeAC::getRaw(void) {
fixup(); // Ensure correct settings before sending.
return _.remote_state;
}
/// Set the internal state from a valid code for this protocol.
/// @param[in] new_code A valid code for this protocol.
void IRGreeAC::setRaw(const uint8_t new_code[]) {
std::memcpy(_.remote_state, new_code, kGreeStateLength);
// We can only detect the difference between models when the power is on.
if (_.Power) {
if (_.ModelA)
_model = gree_ac_remote_model_t::YAW1F;
else
_model = gree_ac_remote_model_t::YBOFB;
}
}
/// Calculate and set the checksum values for the internal state.
/// @param[in] length The size/length of the state array to fix the checksum of.
void IRGreeAC::checksum(const uint16_t length) {
// Gree uses the same checksum alg. as Kelvinator's block checksum.
_.Sum = IRKelvinatorAC::calcBlockChecksum(_.remote_state, length);
}
/// Verify the checksum is valid for a given state.
/// @param[in] state The array to verify the checksum of.
/// @param[in] length The length of the state array.
/// @return true, if the state has a valid checksum. Otherwise, false.
bool IRGreeAC::validChecksum(const uint8_t state[], const uint16_t length) {
// Top 4 bits of the last byte in the state is the state's checksum.
return GETBITS8(state[length - 1], kHighNibble, kNibbleSize) ==
IRKelvinatorAC::calcBlockChecksum(state, length);
}
/// Set the model of the A/C to emulate.
/// @param[in] model The enum of the appropriate model.
void IRGreeAC::setModel(const gree_ac_remote_model_t model) {
switch (model) {
case gree_ac_remote_model_t::YAW1F:
case gree_ac_remote_model_t::YBOFB: _model = model; break;
default: _model = gree_ac_remote_model_t::YAW1F;
}
}
/// Get/Detect the model of the A/C.
/// @return The enum of the compatible model.
gree_ac_remote_model_t IRGreeAC::getModel(void) const { return _model; }
/// Change the power setting to On.
void IRGreeAC::on(void) { setPower(true); }
/// Change the power setting to Off.
void IRGreeAC::off(void) { setPower(false); }
/// Change the power setting.
/// @param[in] on true, the setting is on. false, the setting is off.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/814
void IRGreeAC::setPower(const bool on) {
_.Power = on;
// May not be needed. See #814
_.ModelA = (on && _model == gree_ac_remote_model_t::YAW1F);
}
/// Get the value of the current power setting.
/// @return true, the setting is on. false, the setting is off.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/814
bool IRGreeAC::getPower(void) const {
// See #814. Not checking/requiring: (_.ModelA)
return _.Power;
}
/// Set the default temperature units to use.
/// @param[in] on Use Fahrenheit as the units.
/// true is Fahrenheit, false is Celsius.
void IRGreeAC::setUseFahrenheit(const bool on) {
_.UseFahrenheit = on;
}
/// Get the default temperature units in use.
/// @return true is Fahrenheit, false is Celsius.
bool IRGreeAC::getUseFahrenheit(void) const {
return _.UseFahrenheit;
}
/// Set the temp. in degrees
/// @param[in] temp Desired temperature in Degrees.
/// @param[in] fahrenheit Use units of Fahrenheit and set that as units used.
/// false is Celsius (Default), true is Fahrenheit.
/// @note The unit actually works in Celsius with a special optional
/// "extra degree" when sending Fahrenheit.
void IRGreeAC::setTemp(const uint8_t temp, const bool fahrenheit) {
float safecelsius = temp;
if (fahrenheit)
// Covert to F, and add a fudge factor to round to the expected degree.
// Why 0.6 you ask?! Because it works. Ya'd thing 0.5 would be good for
// rounding, but Noooooo!
safecelsius = fahrenheitToCelsius(temp + 0.6);
setUseFahrenheit(fahrenheit); // Set the correct Temp units.
// Make sure we have desired temp in the correct range.
safecelsius = std::max(static_cast<float>(kGreeMinTempC), safecelsius);
safecelsius = std::min(static_cast<float>(kGreeMaxTempC), safecelsius);
// An operating mode of Auto locks the temp to a specific value. Do so.
if (_.Mode == kGreeAuto) safecelsius = 25;
// Set the "main" Celsius degrees.
_.Temp = safecelsius - kGreeMinTempC;
// Deal with the extra degree fahrenheit difference.
_.TempExtraDegreeF = (static_cast<uint8_t>(safecelsius * 2) & 1);
}
/// Get the set temperature
/// @return The temperature in degrees in the current units (C/F) set.
uint8_t IRGreeAC::getTemp(void) const {
uint8_t deg = kGreeMinTempC + _.Temp;
if (_.UseFahrenheit) {
deg = celsiusToFahrenheit(deg);
// Retrieve the "extra" fahrenheit from elsewhere in the code.
if (_.TempExtraDegreeF) deg++;
deg = std::max(deg, kGreeMinTempF); // Cover the fact that 61F is < 16C
}
return deg;
}
/// Set the speed of the fan.
/// @param[in] speed The desired setting. 0 is auto, 1-3 is the speed.
void IRGreeAC::setFan(const uint8_t speed) {
uint8_t fan = std::min(kGreeFanMax, speed); // Bounds check
if (_.Mode == kGreeDry) fan = 1; // DRY mode is always locked to fan 1.
// Set the basic fan values.
_.Fan = fan;
}
/// Get the current fan speed setting.
/// @return The current fan speed.
uint8_t IRGreeAC::getFan(void) const {
return _.Fan;
}
/// Set the operating mode of the A/C.
/// @param[in] new_mode The desired operating mode.
void IRGreeAC::setMode(const uint8_t new_mode) {
uint8_t mode = new_mode;
switch (mode) {
// AUTO is locked to 25C
case kGreeAuto: setTemp(25); break;
// DRY always sets the fan to 1.
case kGreeDry: setFan(1); break;
case kGreeCool:
case kGreeFan:
case kGreeHeat: break;
// If we get an unexpected mode, default to AUTO.
default: mode = kGreeAuto;
}
_.Mode = mode;
}
/// Get the operating mode setting of the A/C.
/// @return The current operating mode setting.
uint8_t IRGreeAC::getMode(void) const {
return _.Mode;
}
/// Set the Light (LED) setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRGreeAC::setLight(const bool on) {
_.Light = on;
}
/// Get the Light (LED) setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRGreeAC::getLight(void) const {
return _.Light;
}
/// Set the IFeel setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRGreeAC::setIFeel(const bool on) {
_.IFeel = on;
}
/// Get the IFeel setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRGreeAC::getIFeel(void) const {
return _.IFeel;
}
/// Set the Wifi (enabled) setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRGreeAC::setWiFi(const bool on) {
_.WiFi = on;
}
/// Get the Wifi (enabled) setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRGreeAC::getWiFi(void) const {
return _.WiFi;
}
/// Set the XFan (Mould) setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRGreeAC::setXFan(const bool on) {
_.Xfan = on;
}
/// Get the XFan (Mould) setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRGreeAC::getXFan(void) const {
return _.Xfan;
}
/// Set the Sleep setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRGreeAC::setSleep(const bool on) {
_.Sleep = on;
}
/// Get the Sleep setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRGreeAC::getSleep(void) const {
return _.Sleep;
}
/// Set the Turbo setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRGreeAC::setTurbo(const bool on) {
_.Turbo = on;
}
/// Get the Turbo setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRGreeAC::getTurbo(void) const {
return _.Turbo;
}
/// Set the Vertical Swing mode of the A/C.
/// @param[in] automatic Do we use the automatic setting?
/// @param[in] position The position/mode to set the vanes to.
void IRGreeAC::setSwingVertical(const bool automatic, const uint8_t position) {
_.SwingAuto = automatic;
uint8_t new_position = position;
if (!automatic) {
switch (position) {
case kGreeSwingUp:
case kGreeSwingMiddleUp:
case kGreeSwingMiddle:
case kGreeSwingMiddleDown:
case kGreeSwingDown:
break;
default:
new_position = kGreeSwingLastPos;
}
} else {
switch (position) {
case kGreeSwingAuto:
case kGreeSwingDownAuto:
case kGreeSwingMiddleAuto:
case kGreeSwingUpAuto:
break;
default:
new_position = kGreeSwingAuto;
}
}
_.Swing = new_position;
}
/// Get the Vertical Swing Automatic mode setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRGreeAC::getSwingVerticalAuto(void) const {
return _.SwingAuto;
}
/// Get the Vertical Swing position setting of the A/C.
/// @return The native position/mode.
uint8_t IRGreeAC::getSwingVerticalPosition(void) const {
return _.Swing;
}
/// Set the timer enable setting of the A/C.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRGreeAC::setTimerEnabled(const bool on) {
_.TimerEnabled = on;
}
/// Get the timer enabled setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRGreeAC::getTimerEnabled(void) const {
return _.TimerEnabled;
}
/// Get the timer time value from the A/C.
/// @return The number of minutes the timer is set for.
uint16_t IRGreeAC::getTimer(void) const {
uint16_t hrs = irutils::bcdToUint8((_.TimerTensHr << kNibbleSize) |
_.TimerHours);
return hrs * 60 + (_.TimerHalfHr ? 30 : 0);
}
/// Set the A/C's timer to turn off in X many minutes.
/// @param[in] minutes The number of minutes the timer should be set for.
/// @note Stores time internally in 30 min units.
/// e.g. 5 mins means 0 (& Off), 95 mins is 90 mins (& On). Max is 24 hours.
void IRGreeAC::setTimer(const uint16_t minutes) {
uint16_t mins = std::min(kGreeTimerMax, minutes); // Bounds check.
setTimerEnabled(mins >= 30); // Timer is enabled when >= 30 mins.
uint8_t hours = mins / 60;
// Set the half hour bit.
_.TimerHalfHr = (mins % 60) >= 30;
// Set the "tens" digit of hours.
_.TimerTensHr = hours / 10;
// Set the "units" digit of hours.
_.TimerHours = hours % 10;
}
/// Set temperature display mode.
/// i.e. Internal, External temperature sensing.
/// @param[in] mode The desired temp source to display.
/// @note In order for the A/C unit properly accept these settings. You must
/// cycle (send) in the following order:
/// kGreeDisplayTempOff(0) -> kGreeDisplayTempSet(1) ->
/// kGreeDisplayTempInside(2) ->kGreeDisplayTempOutside(3) ->
/// kGreeDisplayTempOff(0).
/// The unit will no behave correctly if the changes of this setting are sent
/// out of order.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1118#issuecomment-628242152
void IRGreeAC::setDisplayTempSource(const uint8_t mode) {
_.DisplayTemp = mode;
}
/// Get the temperature display mode.
/// i.e. Internal, External temperature sensing.
/// @return The current temp source being displayed.
uint8_t IRGreeAC::getDisplayTempSource(void) const {
return _.DisplayTemp;
}
/// Convert a stdAc::opmode_t enum into its native mode.
/// @param[in] mode The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRGreeAC::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kGreeCool;
case stdAc::opmode_t::kHeat: return kGreeHeat;
case stdAc::opmode_t::kDry: return kGreeDry;
case stdAc::opmode_t::kFan: return kGreeFan;
default: return kGreeAuto;
}
}
/// Convert a stdAc::fanspeed_t enum into it's native speed.
/// @param[in] speed The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRGreeAC::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin: return kGreeFanMin;
case stdAc::fanspeed_t::kLow:
case stdAc::fanspeed_t::kMedium: return kGreeFanMax - 1;
case stdAc::fanspeed_t::kHigh:
case stdAc::fanspeed_t::kMax: return kGreeFanMax;
default: return kGreeFanAuto;
}
}
/// Convert a stdAc::swingv_t enum into it's native setting.
/// @param[in] swingv The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRGreeAC::convertSwingV(const stdAc::swingv_t swingv) {
switch (swingv) {
case stdAc::swingv_t::kHighest: return kGreeSwingUp;
case stdAc::swingv_t::kHigh: return kGreeSwingMiddleUp;
case stdAc::swingv_t::kMiddle: return kGreeSwingMiddle;
case stdAc::swingv_t::kLow: return kGreeSwingMiddleDown;
case stdAc::swingv_t::kLowest: return kGreeSwingDown;
default: return kGreeSwingAuto;
}
}
/// Convert a native mode into its stdAc equivalent.
/// @param[in] mode The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::opmode_t IRGreeAC::toCommonMode(const uint8_t mode) {
switch (mode) {
case kGreeCool: return stdAc::opmode_t::kCool;
case kGreeHeat: return stdAc::opmode_t::kHeat;
case kGreeDry: return stdAc::opmode_t::kDry;
case kGreeFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
/// Convert a native fan speed into its stdAc equivalent.
/// @param[in] speed The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::fanspeed_t IRGreeAC::toCommonFanSpeed(const uint8_t speed) {
switch (speed) {
case kGreeFanMax: return stdAc::fanspeed_t::kMax;
case kGreeFanMax - 1: return stdAc::fanspeed_t::kMedium;
case kGreeFanMin: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
/// Convert a stdAc::swingv_t enum into it's native setting.
/// @param[in] pos The enum to be converted.
/// @return The native equivalent of the enum.
stdAc::swingv_t IRGreeAC::toCommonSwingV(const uint8_t pos) {
switch (pos) {
case kGreeSwingUp: return stdAc::swingv_t::kHighest;
case kGreeSwingMiddleUp: return stdAc::swingv_t::kHigh;
case kGreeSwingMiddle: return stdAc::swingv_t::kMiddle;
case kGreeSwingMiddleDown: return stdAc::swingv_t::kLow;
case kGreeSwingDown: return stdAc::swingv_t::kLowest;
default: return stdAc::swingv_t::kAuto;
}
}
/// Convert the current internal state into its stdAc::state_t equivalent.
/// @return The stdAc equivalent of the native settings.
stdAc::state_t IRGreeAC::toCommon(void) {
stdAc::state_t result;
result.protocol = decode_type_t::GREE;
result.model = _model;
result.power = _.Power;
result.mode = toCommonMode(_.Mode);
result.celsius = !_.UseFahrenheit;
result.degrees = getTemp();
result.fanspeed = toCommonFanSpeed(_.Fan);
if (_.SwingAuto)
result.swingv = stdAc::swingv_t::kAuto;
else
result.swingv = toCommonSwingV(_.Swing);
result.turbo = _.Turbo;
result.light = _.Light;
result.clean = _.Xfan;
result.sleep = _.Sleep ? 0 : -1;
// Not supported.
result.swingh = stdAc::swingh_t::kOff;
result.quiet = false;
result.econo = false;
result.filter = false;
result.beep = false;
result.clock = -1;
return result;
}
/// Convert the current internal state into a human readable string.
/// @return A human readable string.
String IRGreeAC::toString(void) {
String result = "";
result.reserve(220); // Reserve some heap for the string to reduce fragging.
result += addModelToString(decode_type_t::GREE, _model, false);
result += addBoolToString(_.Power, kPowerStr);
result += addModeToString(_.Mode, kGreeAuto, kGreeCool, kGreeHeat,
kGreeDry, kGreeFan);
result += addTempToString(getTemp(), !_.UseFahrenheit);
result += addFanToString(_.Fan, kGreeFanMax, kGreeFanMin, kGreeFanAuto,
kGreeFanAuto, kGreeFanMed);
result += addBoolToString(_.Turbo, kTurboStr);
result += addBoolToString(_.IFeel, kIFeelStr);
result += addBoolToString(_.WiFi, kWifiStr);
result += addBoolToString(_.Xfan, kXFanStr);
result += addBoolToString(_.Light, kLightStr);
result += addBoolToString(_.Sleep, kSleepStr);
result += addLabeledString(_.SwingAuto ? kAutoStr : kManualStr,
kSwingVModeStr);
result += addIntToString(_.Swing, kSwingVStr);
result += kSpaceLBraceStr;
switch (_.Swing) {
case kGreeSwingLastPos:
result += kLastStr;
break;
case kGreeSwingAuto:
result += kAutoStr;
break;
default: result += kUnknownStr;
}
result += ')';
result += addLabeledString(
_.TimerEnabled ? minsToString(getTimer()) : kOffStr, kTimerStr);
uint8_t src = _.DisplayTemp;
result += addIntToString(src, kDisplayTempStr);
result += kSpaceLBraceStr;
switch (src) {
case kGreeDisplayTempOff:
result += kOffStr;
break;
case kGreeDisplayTempSet:
result += kSetStr;
break;
case kGreeDisplayTempInside:
result += kInsideStr;
break;
case kGreeDisplayTempOutside:
result += kOutsideStr;
break;
default: result += kUnknownStr;
}
result += ')';
return result;
}
#if DECODE_GREE
/// Decode the supplied Gree HVAC message.
/// Status: STABLE / Working.
/// @param[in,out] results Ptr to the data to decode & where to store the decode
/// result.
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return A boolean. True if it can decode it, false if it can't.
bool IRrecv::decodeGree(decode_results* results, uint16_t offset,
const uint16_t nbits, bool const strict) {
if (results->rawlen <=
2 * (nbits + kGreeBlockFooterBits) + (kHeader + kFooter + 1) - 1 + offset)
return false; // Can't possibly be a valid Gree message.
if (strict && nbits != kGreeBits)
return false; // Not strictly a Gree message.
// There are two blocks back-to-back in a full Gree IR message
// sequence.
uint16_t used;
// Header + Data Block #1 (32 bits)
used = matchGeneric(results->rawbuf + offset, results->state,
results->rawlen - offset, nbits / 2,
kGreeHdrMark, kGreeHdrSpace,
kGreeBitMark, kGreeOneSpace,
kGreeBitMark, kGreeZeroSpace,
0, 0, false,
_tolerance, kMarkExcess, false);
if (used == 0) return false;
offset += used;
// Block #1 footer (3 bits, B010)
match_result_t data_result;
data_result = matchData(&(results->rawbuf[offset]), kGreeBlockFooterBits,
kGreeBitMark, kGreeOneSpace, kGreeBitMark,
kGreeZeroSpace, _tolerance, kMarkExcess, false);
if (data_result.success == false) return false;
if (data_result.data != kGreeBlockFooter) return false;
offset += data_result.used;
// Inter-block gap + Data Block #2 (32 bits) + Footer
if (!matchGeneric(results->rawbuf + offset, results->state + 4,
results->rawlen - offset, nbits / 2,
kGreeBitMark, kGreeMsgSpace,
kGreeBitMark, kGreeOneSpace,
kGreeBitMark, kGreeZeroSpace,
kGreeBitMark, kGreeMsgSpace, true,
_tolerance, kMarkExcess, false)) return false;
// Compliance
if (strict) {
// Verify the message's checksum is correct.
if (!IRGreeAC::validChecksum(results->state)) return false;
}
// Success
results->decode_type = GREE;
results->bits = nbits;
// No need to record the state as we stored it as we decoded it.
// As we use result->state, we don't record value, address, or command as it
// is a union data type.
return true;
}
#endif // DECODE_GREE