Tasmota/lib/IRremoteESP8266-2.7.7/src/ir_Toshiba.cpp
2020-05-20 12:42:34 +02:00

359 lines
12 KiB
C++

// Copyright 2017 David Conran
// Toshiba A/C support added by David Conran
#include "ir_Toshiba.h"
#include <algorithm>
#include <cstring>
#ifndef ARDUINO
#include <string>
#endif
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
//
// Equipment it seems compatible with:
// * Toshiba RAS-B13N3KV2 / Akita EVO II
// * Toshiba RAS-B13N3KVP-E, RAS 18SKP-ES
// * Toshiba WH-TA04NE, WC-L03SE
// * <Add models (A/C & remotes) you've gotten it working with here>
// Constants
// Toshiba A/C
// Ref:
// https://github.com/r45635/HVAC-IR-Control/blob/master/HVAC_ESP8266/HVAC_ESP8266T.ino#L77
const uint16_t kToshibaAcHdrMark = 4400;
const uint16_t kToshibaAcHdrSpace = 4300;
const uint16_t kToshibaAcBitMark = 543;
const uint16_t kToshibaAcOneSpace = 1623;
const uint16_t kToshibaAcZeroSpace = 472;
const uint16_t kToshibaAcMinGap = 7048;
using irutils::addBoolToString;
using irutils::addFanToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addTempToString;
using irutils::setBit;
using irutils::setBits;
#if SEND_TOSHIBA_AC
// Send a Toshiba A/C message.
//
// Args:
// data: An array of bytes containing the IR command.
// nbytes: Nr. of bytes of data in the array. (>=kToshibaACStateLength)
// repeat: Nr. of times the message is to be repeated.
// (Default = kToshibaACMinRepeat).
//
// Status: StABLE / Working.
//
void IRsend::sendToshibaAC(const unsigned char data[], const uint16_t nbytes,
const uint16_t repeat) {
if (nbytes < kToshibaACStateLength)
return; // Not enough bytes to send a proper message.
sendGeneric(kToshibaAcHdrMark, kToshibaAcHdrSpace, kToshibaAcBitMark,
kToshibaAcOneSpace, kToshibaAcBitMark, kToshibaAcZeroSpace,
kToshibaAcBitMark, kToshibaAcMinGap, data, nbytes, 38, true,
repeat, 50);
}
#endif // SEND_TOSHIBA_AC
// Code to emulate Toshiba A/C IR remote control unit.
// Inspired and derived from the work done at:
// https://github.com/r45635/HVAC-IR-Control
//
// Status: STABLE / Working.
//
// Initialise the object.
IRToshibaAC::IRToshibaAC(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { this->stateReset(); }
// Reset the state of the remote to a known good state/sequence.
void IRToshibaAC::stateReset(void) {
// The state of the IR remote in IR code form.
// Known good state obtained from:
// https://github.com/r45635/HVAC-IR-Control/blob/master/HVAC_ESP8266/HVAC_ESP8266T.ino#L103
static const uint8_t kReset[kToshibaACStateLength] = {
0xF2, 0x0D, 0x03, 0xFC, 0x01};
memcpy(remote_state, kReset, kToshibaACStateLength);
mode_state = getMode(true);
}
// Configure the pin for output.
void IRToshibaAC::begin(void) { _irsend.begin(); }
#if SEND_TOSHIBA_AC
// Send the current desired state to the IR LED.
void IRToshibaAC::send(const uint16_t repeat) {
_irsend.sendToshibaAC(getRaw(), kToshibaACStateLength, repeat);
}
#endif // SEND_TOSHIBA_AC
// Return a pointer to the internal state date of the remote.
uint8_t* IRToshibaAC::getRaw(void) {
this->checksum();
return remote_state;
}
// Override the internal state with the new state.
void IRToshibaAC::setRaw(const uint8_t newState[]) {
memcpy(remote_state, newState, kToshibaACStateLength);
mode_state = this->getMode(true);
}
// Calculate the checksum for a given array.
// Args:
// state: The array to calculate the checksum over.
// length: The size of the array.
// Returns:
// The 8 bit checksum value.
uint8_t IRToshibaAC::calcChecksum(const uint8_t state[],
const uint16_t length) {
uint8_t checksum = 0;
// Only calculate it for valid lengths.
if (length > 1) {
// Checksum is simple XOR of all bytes except the last one.
for (uint8_t i = 0; i < length - 1; i++) checksum ^= state[i];
}
return checksum;
}
// Verify the checksum is valid for a given state.
// Args:
// state: The array to verify the checksum of.
// length: The size of the state.
// Returns:
// A boolean.
bool IRToshibaAC::validChecksum(const uint8_t state[], const uint16_t length) {
return (length > 1 && state[length - 1] == IRToshibaAC::calcChecksum(state,
length));
}
// Calculate & set the checksum for the current internal state of the remote.
void IRToshibaAC::checksum(const uint16_t length) {
// Stored the checksum value in the last byte.
if (length > 1) remote_state[length - 1] = this->calcChecksum(remote_state,
length);
}
// Set the requested power state of the A/C to on.
void IRToshibaAC::on(void) { setPower(true); }
// Set the requested power state of the A/C to off.
void IRToshibaAC::off(void) { setPower(false); }
// Set the requested power state of the A/C.
void IRToshibaAC::setPower(const bool on) {
setBit(&remote_state[6], kToshibaAcPowerOffset, !on); // Cleared when on.
if (on)
setMode(mode_state);
else
setBits(&remote_state[6], kToshibaAcModeOffset, kToshibaAcModeSize,
kToshibaAcHeat);
}
// Return the requested power state of the A/C.
bool IRToshibaAC::getPower(void) {
return !GETBIT8(remote_state[6], kToshibaAcPowerOffset);
}
// Set the temp. in deg C
void IRToshibaAC::setTemp(const uint8_t degrees) {
uint8_t temp = std::max((uint8_t)kToshibaAcMinTemp, degrees);
temp = std::min((uint8_t)kToshibaAcMaxTemp, temp);
setBits(&remote_state[5], kToshibaAcTempOffset, kToshibaAcTempSize,
temp - kToshibaAcMinTemp);
}
// Return the set temp. in deg C
uint8_t IRToshibaAC::getTemp(void) {
return GETBITS8(remote_state[5], kToshibaAcTempOffset, kToshibaAcTempSize) +
kToshibaAcMinTemp;
}
// Set the speed of the fan, 0-5.
// 0 is auto, 1-5 is the speed, 5 is Max.
void IRToshibaAC::setFan(const uint8_t speed) {
uint8_t fan = speed;
// Bounds check
if (fan > kToshibaAcFanMax)
fan = kToshibaAcFanMax; // Set the fan to maximum if out of range.
if (fan > kToshibaAcFanAuto) fan++;
setBits(&remote_state[6], kToshibaAcFanOffset, kToshibaAcFanSize, fan);
}
// Return the requested state of the unit's fan.
uint8_t IRToshibaAC::getFan(void) {
uint8_t fan = GETBITS8(remote_state[6], kToshibaAcFanOffset,
kToshibaAcFanSize);
if (fan == kToshibaAcFanAuto) return kToshibaAcFanAuto;
return --fan;
}
// Get the requested climate operation mode of the a/c unit.
// Args:
// useRaw: Indicate to get the mode from the state array. (Default: false)
// Returns:
// A uint8_t containing the A/C mode.
uint8_t IRToshibaAC::getMode(const bool useRaw) {
if (useRaw)
return GETBITS8(remote_state[6], kToshibaAcModeOffset, kToshibaAcModeSize);
else
return mode_state;
}
// Set the requested climate operation mode of the a/c unit.
void IRToshibaAC::setMode(const uint8_t mode) {
// If we get an unexpected mode, default to AUTO.
switch (mode) {
case kToshibaAcAuto:
case kToshibaAcCool:
case kToshibaAcDry:
case kToshibaAcHeat:
mode_state = mode;
// Only adjust the remote_state if we have power set to on.
if (getPower())
setBits(&remote_state[6], kToshibaAcModeOffset, kToshibaAcModeSize,
mode_state);
return;
default: this->setMode(kToshibaAcAuto); // There is no Fan mode.
}
}
// Convert a standard A/C mode into its native mode.
uint8_t IRToshibaAC::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kToshibaAcCool;
case stdAc::opmode_t::kHeat: return kToshibaAcHeat;
case stdAc::opmode_t::kDry: return kToshibaAcDry;
// No Fan mode.
default: return kToshibaAcAuto;
}
}
// Convert a standard A/C Fan speed into its native fan speed.
uint8_t IRToshibaAC::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin: return kToshibaAcFanMax - 4;
case stdAc::fanspeed_t::kLow: return kToshibaAcFanMax - 3;
case stdAc::fanspeed_t::kMedium: return kToshibaAcFanMax - 2;
case stdAc::fanspeed_t::kHigh: return kToshibaAcFanMax - 1;
case stdAc::fanspeed_t::kMax: return kToshibaAcFanMax;
default: return kToshibaAcFanAuto;
}
}
// Convert a native mode to it's common equivalent.
stdAc::opmode_t IRToshibaAC::toCommonMode(const uint8_t mode) {
switch (mode) {
case kToshibaAcCool: return stdAc::opmode_t::kCool;
case kToshibaAcHeat: return stdAc::opmode_t::kHeat;
case kToshibaAcDry: return stdAc::opmode_t::kDry;
default: return stdAc::opmode_t::kAuto;
}
}
// Convert a native fan speed to it's common equivalent.
stdAc::fanspeed_t IRToshibaAC::toCommonFanSpeed(const uint8_t spd) {
switch (spd) {
case kToshibaAcFanMax: return stdAc::fanspeed_t::kMax;
case kToshibaAcFanMax - 1: return stdAc::fanspeed_t::kHigh;
case kToshibaAcFanMax - 2: return stdAc::fanspeed_t::kMedium;
case kToshibaAcFanMax - 3: return stdAc::fanspeed_t::kLow;
case kToshibaAcFanMax - 4: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
// Convert the A/C state to it's common equivalent.
stdAc::state_t IRToshibaAC::toCommon(void) {
stdAc::state_t result;
result.protocol = decode_type_t::TOSHIBA_AC;
result.model = -1; // Not supported.
result.power = this->getPower();
result.mode = this->toCommonMode(this->getMode());
result.celsius = true;
result.degrees = this->getTemp();
result.fanspeed = this->toCommonFanSpeed(this->getFan());
// Not supported.
result.turbo = false;
result.light = false;
result.filter = false;
result.econo = false;
result.swingv = stdAc::swingv_t::kOff;
result.swingh = stdAc::swingh_t::kOff;
result.quiet = false;
result.clean = false;
result.beep = false;
result.sleep = -1;
result.clock = -1;
return result;
}
// Convert the internal state into a human readable string.
String IRToshibaAC::toString(void) {
String result = "";
result.reserve(40);
result += addBoolToString(getPower(), kPowerStr, false);
result += addModeToString(getMode(), kToshibaAcAuto, kToshibaAcCool,
kToshibaAcHeat, kToshibaAcDry, kToshibaAcAuto);
result += addTempToString(getTemp());
result += addFanToString(getFan(), kToshibaAcFanMax, kToshibaAcFanMin,
kToshibaAcFanAuto, kToshibaAcFanAuto,
kToshibaAcFanMed);
return result;
}
#if DECODE_TOSHIBA_AC
// Decode a Toshiba AC IR message if possible.
// Places successful decode information in the results pointer.
// Args:
// results: Ptr to the data to decode and where to store the decode result.
// offset: The starting index to use when attempting to decode the raw data.
// Typically/Defaults to kStartOffset.
// nbits: The number of data bits to expect. Typically kToshibaACBits.
// strict: Flag to indicate if we strictly adhere to the specification.
// Returns:
// boolean: True if it can decode it, false if it can't.
//
// Status: STABLE / Working.
//
// Ref:
//
bool IRrecv::decodeToshibaAC(decode_results* results, uint16_t offset,
const uint16_t nbits, const bool strict) {
// Compliance
if (strict && nbits != kToshibaACBits)
return false; // Must be called with the correct nr. of bytes.
// Match Header + Data + Footer
if (!matchGeneric(results->rawbuf + offset, results->state,
results->rawlen - offset, nbits,
kToshibaAcHdrMark, kToshibaAcHdrSpace,
kToshibaAcBitMark, kToshibaAcOneSpace,
kToshibaAcBitMark, kToshibaAcZeroSpace,
kToshibaAcBitMark, kToshibaAcMinGap, true,
_tolerance, kMarkExcess)) return false;
// Compliance
if (strict) {
// Check that the checksum of the message is correct.
if (!IRToshibaAC::validChecksum(results->state)) return false;
}
// Success
results->decode_type = TOSHIBA_AC;
results->bits = nbits;
// No need to record the state as we stored it as we decoded it.
// As we use result->state, we don't record value, address, or command as it
// is a union data type.
return true;
}
#endif // DECODE_TOSHIBA_AC