359 lines
12 KiB
C++
359 lines
12 KiB
C++
// Copyright 2017 David Conran
|
|
|
|
// Toshiba A/C support added by David Conran
|
|
|
|
|
|
#include "ir_Toshiba.h"
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#ifndef ARDUINO
|
|
#include <string>
|
|
#endif
|
|
#include "IRrecv.h"
|
|
#include "IRsend.h"
|
|
#include "IRtext.h"
|
|
#include "IRutils.h"
|
|
|
|
//
|
|
// Equipment it seems compatible with:
|
|
// * Toshiba RAS-B13N3KV2 / Akita EVO II
|
|
// * Toshiba RAS-B13N3KVP-E, RAS 18SKP-ES
|
|
// * Toshiba WH-TA04NE, WC-L03SE
|
|
// * <Add models (A/C & remotes) you've gotten it working with here>
|
|
|
|
// Constants
|
|
|
|
// Toshiba A/C
|
|
// Ref:
|
|
// https://github.com/r45635/HVAC-IR-Control/blob/master/HVAC_ESP8266/HVAC_ESP8266T.ino#L77
|
|
const uint16_t kToshibaAcHdrMark = 4400;
|
|
const uint16_t kToshibaAcHdrSpace = 4300;
|
|
const uint16_t kToshibaAcBitMark = 543;
|
|
const uint16_t kToshibaAcOneSpace = 1623;
|
|
const uint16_t kToshibaAcZeroSpace = 472;
|
|
const uint16_t kToshibaAcMinGap = 7048;
|
|
|
|
using irutils::addBoolToString;
|
|
using irutils::addFanToString;
|
|
using irutils::addIntToString;
|
|
using irutils::addLabeledString;
|
|
using irutils::addModeToString;
|
|
using irutils::addTempToString;
|
|
using irutils::setBit;
|
|
using irutils::setBits;
|
|
|
|
#if SEND_TOSHIBA_AC
|
|
// Send a Toshiba A/C message.
|
|
//
|
|
// Args:
|
|
// data: An array of bytes containing the IR command.
|
|
// nbytes: Nr. of bytes of data in the array. (>=kToshibaACStateLength)
|
|
// repeat: Nr. of times the message is to be repeated.
|
|
// (Default = kToshibaACMinRepeat).
|
|
//
|
|
// Status: StABLE / Working.
|
|
//
|
|
void IRsend::sendToshibaAC(const unsigned char data[], const uint16_t nbytes,
|
|
const uint16_t repeat) {
|
|
if (nbytes < kToshibaACStateLength)
|
|
return; // Not enough bytes to send a proper message.
|
|
sendGeneric(kToshibaAcHdrMark, kToshibaAcHdrSpace, kToshibaAcBitMark,
|
|
kToshibaAcOneSpace, kToshibaAcBitMark, kToshibaAcZeroSpace,
|
|
kToshibaAcBitMark, kToshibaAcMinGap, data, nbytes, 38, true,
|
|
repeat, 50);
|
|
}
|
|
#endif // SEND_TOSHIBA_AC
|
|
|
|
// Code to emulate Toshiba A/C IR remote control unit.
|
|
// Inspired and derived from the work done at:
|
|
// https://github.com/r45635/HVAC-IR-Control
|
|
//
|
|
// Status: STABLE / Working.
|
|
//
|
|
// Initialise the object.
|
|
IRToshibaAC::IRToshibaAC(const uint16_t pin, const bool inverted,
|
|
const bool use_modulation)
|
|
: _irsend(pin, inverted, use_modulation) { this->stateReset(); }
|
|
|
|
// Reset the state of the remote to a known good state/sequence.
|
|
void IRToshibaAC::stateReset(void) {
|
|
// The state of the IR remote in IR code form.
|
|
// Known good state obtained from:
|
|
// https://github.com/r45635/HVAC-IR-Control/blob/master/HVAC_ESP8266/HVAC_ESP8266T.ino#L103
|
|
static const uint8_t kReset[kToshibaACStateLength] = {
|
|
0xF2, 0x0D, 0x03, 0xFC, 0x01};
|
|
memcpy(remote_state, kReset, kToshibaACStateLength);
|
|
mode_state = getMode(true);
|
|
}
|
|
|
|
// Configure the pin for output.
|
|
void IRToshibaAC::begin(void) { _irsend.begin(); }
|
|
|
|
#if SEND_TOSHIBA_AC
|
|
// Send the current desired state to the IR LED.
|
|
void IRToshibaAC::send(const uint16_t repeat) {
|
|
_irsend.sendToshibaAC(getRaw(), kToshibaACStateLength, repeat);
|
|
}
|
|
#endif // SEND_TOSHIBA_AC
|
|
|
|
// Return a pointer to the internal state date of the remote.
|
|
uint8_t* IRToshibaAC::getRaw(void) {
|
|
this->checksum();
|
|
return remote_state;
|
|
}
|
|
|
|
// Override the internal state with the new state.
|
|
void IRToshibaAC::setRaw(const uint8_t newState[]) {
|
|
memcpy(remote_state, newState, kToshibaACStateLength);
|
|
mode_state = this->getMode(true);
|
|
}
|
|
|
|
// Calculate the checksum for a given array.
|
|
// Args:
|
|
// state: The array to calculate the checksum over.
|
|
// length: The size of the array.
|
|
// Returns:
|
|
// The 8 bit checksum value.
|
|
uint8_t IRToshibaAC::calcChecksum(const uint8_t state[],
|
|
const uint16_t length) {
|
|
uint8_t checksum = 0;
|
|
// Only calculate it for valid lengths.
|
|
if (length > 1) {
|
|
// Checksum is simple XOR of all bytes except the last one.
|
|
for (uint8_t i = 0; i < length - 1; i++) checksum ^= state[i];
|
|
}
|
|
return checksum;
|
|
}
|
|
|
|
// Verify the checksum is valid for a given state.
|
|
// Args:
|
|
// state: The array to verify the checksum of.
|
|
// length: The size of the state.
|
|
// Returns:
|
|
// A boolean.
|
|
bool IRToshibaAC::validChecksum(const uint8_t state[], const uint16_t length) {
|
|
return (length > 1 && state[length - 1] == IRToshibaAC::calcChecksum(state,
|
|
length));
|
|
}
|
|
|
|
// Calculate & set the checksum for the current internal state of the remote.
|
|
void IRToshibaAC::checksum(const uint16_t length) {
|
|
// Stored the checksum value in the last byte.
|
|
if (length > 1) remote_state[length - 1] = this->calcChecksum(remote_state,
|
|
length);
|
|
}
|
|
|
|
// Set the requested power state of the A/C to on.
|
|
void IRToshibaAC::on(void) { setPower(true); }
|
|
|
|
// Set the requested power state of the A/C to off.
|
|
void IRToshibaAC::off(void) { setPower(false); }
|
|
|
|
// Set the requested power state of the A/C.
|
|
void IRToshibaAC::setPower(const bool on) {
|
|
setBit(&remote_state[6], kToshibaAcPowerOffset, !on); // Cleared when on.
|
|
if (on)
|
|
setMode(mode_state);
|
|
else
|
|
setBits(&remote_state[6], kToshibaAcModeOffset, kToshibaAcModeSize,
|
|
kToshibaAcHeat);
|
|
}
|
|
|
|
// Return the requested power state of the A/C.
|
|
bool IRToshibaAC::getPower(void) {
|
|
return !GETBIT8(remote_state[6], kToshibaAcPowerOffset);
|
|
}
|
|
|
|
// Set the temp. in deg C
|
|
void IRToshibaAC::setTemp(const uint8_t degrees) {
|
|
uint8_t temp = std::max((uint8_t)kToshibaAcMinTemp, degrees);
|
|
temp = std::min((uint8_t)kToshibaAcMaxTemp, temp);
|
|
setBits(&remote_state[5], kToshibaAcTempOffset, kToshibaAcTempSize,
|
|
temp - kToshibaAcMinTemp);
|
|
}
|
|
|
|
// Return the set temp. in deg C
|
|
uint8_t IRToshibaAC::getTemp(void) {
|
|
return GETBITS8(remote_state[5], kToshibaAcTempOffset, kToshibaAcTempSize) +
|
|
kToshibaAcMinTemp;
|
|
}
|
|
|
|
// Set the speed of the fan, 0-5.
|
|
// 0 is auto, 1-5 is the speed, 5 is Max.
|
|
void IRToshibaAC::setFan(const uint8_t speed) {
|
|
uint8_t fan = speed;
|
|
// Bounds check
|
|
if (fan > kToshibaAcFanMax)
|
|
fan = kToshibaAcFanMax; // Set the fan to maximum if out of range.
|
|
if (fan > kToshibaAcFanAuto) fan++;
|
|
setBits(&remote_state[6], kToshibaAcFanOffset, kToshibaAcFanSize, fan);
|
|
}
|
|
|
|
// Return the requested state of the unit's fan.
|
|
uint8_t IRToshibaAC::getFan(void) {
|
|
uint8_t fan = GETBITS8(remote_state[6], kToshibaAcFanOffset,
|
|
kToshibaAcFanSize);
|
|
if (fan == kToshibaAcFanAuto) return kToshibaAcFanAuto;
|
|
return --fan;
|
|
}
|
|
|
|
// Get the requested climate operation mode of the a/c unit.
|
|
// Args:
|
|
// useRaw: Indicate to get the mode from the state array. (Default: false)
|
|
// Returns:
|
|
// A uint8_t containing the A/C mode.
|
|
uint8_t IRToshibaAC::getMode(const bool useRaw) {
|
|
if (useRaw)
|
|
return GETBITS8(remote_state[6], kToshibaAcModeOffset, kToshibaAcModeSize);
|
|
else
|
|
return mode_state;
|
|
}
|
|
|
|
// Set the requested climate operation mode of the a/c unit.
|
|
void IRToshibaAC::setMode(const uint8_t mode) {
|
|
// If we get an unexpected mode, default to AUTO.
|
|
switch (mode) {
|
|
case kToshibaAcAuto:
|
|
case kToshibaAcCool:
|
|
case kToshibaAcDry:
|
|
case kToshibaAcHeat:
|
|
mode_state = mode;
|
|
// Only adjust the remote_state if we have power set to on.
|
|
if (getPower())
|
|
setBits(&remote_state[6], kToshibaAcModeOffset, kToshibaAcModeSize,
|
|
mode_state);
|
|
return;
|
|
default: this->setMode(kToshibaAcAuto); // There is no Fan mode.
|
|
}
|
|
}
|
|
|
|
// Convert a standard A/C mode into its native mode.
|
|
uint8_t IRToshibaAC::convertMode(const stdAc::opmode_t mode) {
|
|
switch (mode) {
|
|
case stdAc::opmode_t::kCool: return kToshibaAcCool;
|
|
case stdAc::opmode_t::kHeat: return kToshibaAcHeat;
|
|
case stdAc::opmode_t::kDry: return kToshibaAcDry;
|
|
// No Fan mode.
|
|
default: return kToshibaAcAuto;
|
|
}
|
|
}
|
|
|
|
// Convert a standard A/C Fan speed into its native fan speed.
|
|
uint8_t IRToshibaAC::convertFan(const stdAc::fanspeed_t speed) {
|
|
switch (speed) {
|
|
case stdAc::fanspeed_t::kMin: return kToshibaAcFanMax - 4;
|
|
case stdAc::fanspeed_t::kLow: return kToshibaAcFanMax - 3;
|
|
case stdAc::fanspeed_t::kMedium: return kToshibaAcFanMax - 2;
|
|
case stdAc::fanspeed_t::kHigh: return kToshibaAcFanMax - 1;
|
|
case stdAc::fanspeed_t::kMax: return kToshibaAcFanMax;
|
|
default: return kToshibaAcFanAuto;
|
|
}
|
|
}
|
|
|
|
// Convert a native mode to it's common equivalent.
|
|
stdAc::opmode_t IRToshibaAC::toCommonMode(const uint8_t mode) {
|
|
switch (mode) {
|
|
case kToshibaAcCool: return stdAc::opmode_t::kCool;
|
|
case kToshibaAcHeat: return stdAc::opmode_t::kHeat;
|
|
case kToshibaAcDry: return stdAc::opmode_t::kDry;
|
|
default: return stdAc::opmode_t::kAuto;
|
|
}
|
|
}
|
|
|
|
// Convert a native fan speed to it's common equivalent.
|
|
stdAc::fanspeed_t IRToshibaAC::toCommonFanSpeed(const uint8_t spd) {
|
|
switch (spd) {
|
|
case kToshibaAcFanMax: return stdAc::fanspeed_t::kMax;
|
|
case kToshibaAcFanMax - 1: return stdAc::fanspeed_t::kHigh;
|
|
case kToshibaAcFanMax - 2: return stdAc::fanspeed_t::kMedium;
|
|
case kToshibaAcFanMax - 3: return stdAc::fanspeed_t::kLow;
|
|
case kToshibaAcFanMax - 4: return stdAc::fanspeed_t::kMin;
|
|
default: return stdAc::fanspeed_t::kAuto;
|
|
}
|
|
}
|
|
|
|
// Convert the A/C state to it's common equivalent.
|
|
stdAc::state_t IRToshibaAC::toCommon(void) {
|
|
stdAc::state_t result;
|
|
result.protocol = decode_type_t::TOSHIBA_AC;
|
|
result.model = -1; // Not supported.
|
|
result.power = this->getPower();
|
|
result.mode = this->toCommonMode(this->getMode());
|
|
result.celsius = true;
|
|
result.degrees = this->getTemp();
|
|
result.fanspeed = this->toCommonFanSpeed(this->getFan());
|
|
// Not supported.
|
|
result.turbo = false;
|
|
result.light = false;
|
|
result.filter = false;
|
|
result.econo = false;
|
|
result.swingv = stdAc::swingv_t::kOff;
|
|
result.swingh = stdAc::swingh_t::kOff;
|
|
result.quiet = false;
|
|
result.clean = false;
|
|
result.beep = false;
|
|
result.sleep = -1;
|
|
result.clock = -1;
|
|
return result;
|
|
}
|
|
|
|
// Convert the internal state into a human readable string.
|
|
String IRToshibaAC::toString(void) {
|
|
String result = "";
|
|
result.reserve(40);
|
|
result += addBoolToString(getPower(), kPowerStr, false);
|
|
result += addModeToString(getMode(), kToshibaAcAuto, kToshibaAcCool,
|
|
kToshibaAcHeat, kToshibaAcDry, kToshibaAcAuto);
|
|
result += addTempToString(getTemp());
|
|
result += addFanToString(getFan(), kToshibaAcFanMax, kToshibaAcFanMin,
|
|
kToshibaAcFanAuto, kToshibaAcFanAuto,
|
|
kToshibaAcFanMed);
|
|
return result;
|
|
}
|
|
|
|
#if DECODE_TOSHIBA_AC
|
|
// Decode a Toshiba AC IR message if possible.
|
|
// Places successful decode information in the results pointer.
|
|
// Args:
|
|
// results: Ptr to the data to decode and where to store the decode result.
|
|
// offset: The starting index to use when attempting to decode the raw data.
|
|
// Typically/Defaults to kStartOffset.
|
|
// nbits: The number of data bits to expect. Typically kToshibaACBits.
|
|
// strict: Flag to indicate if we strictly adhere to the specification.
|
|
// Returns:
|
|
// boolean: True if it can decode it, false if it can't.
|
|
//
|
|
// Status: STABLE / Working.
|
|
//
|
|
// Ref:
|
|
//
|
|
bool IRrecv::decodeToshibaAC(decode_results* results, uint16_t offset,
|
|
const uint16_t nbits, const bool strict) {
|
|
// Compliance
|
|
if (strict && nbits != kToshibaACBits)
|
|
return false; // Must be called with the correct nr. of bytes.
|
|
|
|
// Match Header + Data + Footer
|
|
if (!matchGeneric(results->rawbuf + offset, results->state,
|
|
results->rawlen - offset, nbits,
|
|
kToshibaAcHdrMark, kToshibaAcHdrSpace,
|
|
kToshibaAcBitMark, kToshibaAcOneSpace,
|
|
kToshibaAcBitMark, kToshibaAcZeroSpace,
|
|
kToshibaAcBitMark, kToshibaAcMinGap, true,
|
|
_tolerance, kMarkExcess)) return false;
|
|
// Compliance
|
|
if (strict) {
|
|
// Check that the checksum of the message is correct.
|
|
if (!IRToshibaAC::validChecksum(results->state)) return false;
|
|
}
|
|
|
|
// Success
|
|
results->decode_type = TOSHIBA_AC;
|
|
results->bits = nbits;
|
|
// No need to record the state as we stored it as we decoded it.
|
|
// As we use result->state, we don't record value, address, or command as it
|
|
// is a union data type.
|
|
return true;
|
|
}
|
|
#endif // DECODE_TOSHIBA_AC
|